These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 16466702)
1. Prion protein mRNA expression in Xenopus laevis: no induction during melanotrope cell activation. van Rosmalen JW; Born JM; Martens GJ Brain Res; 2006 Feb; 1075(1):20-5. PubMed ID: 16466702 [TBL] [Abstract][Full Text] [Related]
2. Cell type-specific transgene expression of the prion protein in Xenopus intermediate pituitary cells. van Rosmalen JW; Martens GJ FEBS J; 2006 Feb; 273(4):847-62. PubMed ID: 16441670 [TBL] [Abstract][Full Text] [Related]
3. Differential distribution and regulation of expression of synaptosomal-associated protein of 25 kDa isoforms in the Xenopus pituitary gland and brain. Kolk SM; Groffen AJ; Tuinhof R; Ouwens DT; Cools AR; Jenks BG; Verhage M; Roubos EW Neuroscience; 2004; 128(3):531-43. PubMed ID: 15381282 [TBL] [Abstract][Full Text] [Related]
4. Mutagenesis studies in transgenic Xenopus intermediate pituitary cells reveal structural elements necessary for correct prion protein biosynthesis. van Rosmalen JW; Martens GJ Dev Neurobiol; 2007 May; 67(6):715-27. PubMed ID: 17443819 [TBL] [Abstract][Full Text] [Related]
5. Transgene expression of prion protein induces crinophagy in intermediate pituitary cells. van Rosmalen JW; Martens GJ Dev Neurobiol; 2007 Jan; 67(1):81-96. PubMed ID: 17443774 [TBL] [Abstract][Full Text] [Related]
6. Using transgenic animal models in neuroendocrine research: lessons from Xenopus laevis. Scheenen WJ; Jansen EJ; Roubos EW; Martens GJ Ann N Y Acad Sci; 2009 Apr; 1163():296-307. PubMed ID: 19456351 [TBL] [Abstract][Full Text] [Related]
7. Evidence that brain-derived neurotrophic factor acts as an autocrine factor on pituitary melanotrope cells of Xenopus laevis. Kramer BM; Cruijsen PM; Ouwens DT; Coolen MW; Martens GJ; Roubos EW; Jenks BG Endocrinology; 2002 Apr; 143(4):1337-45. PubMed ID: 11897690 [TBL] [Abstract][Full Text] [Related]
8. Differential onset of expression of mRNAs encoding proopiomelanocortin, prohormone convertases 1 and 2, and granin family members during Xenopus laevis development. Holling TM; van Herp F; Durston AJ; Martens GJ Brain Res Mol Brain Res; 2000 Jan; 75(1):70-5. PubMed ID: 10648889 [TBL] [Abstract][Full Text] [Related]
9. Actions of PACAP and VIP on melanotrope cells of Xenopus laevis. Kidane AH; Cruijsen PM; Ortiz-Bazan MA; Vaudry H; Leprince J; Kuijpers-Kwant FJ; Roubos EW; Jenks BG Peptides; 2007 Sep; 28(9):1790-6. PubMed ID: 17482316 [TBL] [Abstract][Full Text] [Related]
10. Expression of HMGA2 variants during oogenesis and early embryogenesis of Xenopus laevis. Hock R; Witte F; Brocher J; Schütz M; Scheer U Eur J Cell Biol; 2006 Jun; 85(6):519-28. PubMed ID: 16584807 [TBL] [Abstract][Full Text] [Related]
11. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis. Jenks BG; Kidane AH; Scheenen WJ; Roubos EW Neuroendocrinology; 2007; 85(3):177-85. PubMed ID: 17389778 [TBL] [Abstract][Full Text] [Related]
12. Expression of exogenous mRNA in Xenopus laevis embryos for the study of cell cycle regulation. Sible JC; Wroble BN Methods Mol Biol; 2009; 518():1-15. PubMed ID: 19085142 [TBL] [Abstract][Full Text] [Related]
13. In vivo induction of glial cell proliferation and axonal outgrowth and myelination by brain-derived neurotrophic factor. de Groot DM; Coenen AJ; Verhofstad A; van Herp F; Martens GJ Mol Endocrinol; 2006 Nov; 20(11):2987-98. PubMed ID: 16887884 [TBL] [Abstract][Full Text] [Related]
14. Transcriptional and posttranscriptional regulation of the proopiomelanocortin gene in the pars intermedia of the pituitary gland of Xenopus laevis. Ayoubi TA; Jenks BG; Roubos EW; Martens GJ Endocrinology; 1992 Jun; 130(6):3560-6. PubMed ID: 1597153 [TBL] [Abstract][Full Text] [Related]
15. Expression patterns of Src-family tyrosine kinases during Xenopus laevis development. Ferjentsik Z; Sindelka R; Jonak J Int J Dev Biol; 2009; 53(1):163-8. PubMed ID: 19123139 [TBL] [Abstract][Full Text] [Related]
16. Wnt6 expression in epidermis and epithelial tissues during Xenopus organogenesis. Lavery DL; Davenport IR; Turnbull YD; Wheeler GN; Hoppler S Dev Dyn; 2008 Mar; 237(3):768-79. PubMed ID: 18224714 [TBL] [Abstract][Full Text] [Related]
17. Spatio-temporal expression of MRF4 transcripts and protein during Xenopus laevis embryogenesis. Della Gaspera B; Sequeira I; Charbonnier F; Becker C; Shi DL; Chanoine C Dev Dyn; 2006 Feb; 235(2):524-9. PubMed ID: 16258964 [TBL] [Abstract][Full Text] [Related]
18. Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis. Kolk SM; Berghs CA; Vaudry H; Verhage M; Roubos EW Endocrinology; 2001 May; 142(5):1950-7. PubMed ID: 11316760 [TBL] [Abstract][Full Text] [Related]
19. Calcium influx through voltage-operated calcium channels is required for proopiomelanocortin protein expression in Xenopus melanotropes. van den Hurk MJ; Scheenen WJ; Roubos EW; Jenks BG Ann N Y Acad Sci; 2005 Apr; 1040():494-7. PubMed ID: 15891099 [TBL] [Abstract][Full Text] [Related]
20. A role for Xlim-1 in pronephros development in Xenopus laevis. Chan TC; Takahashi S; Asashima M Dev Biol; 2000 Dec; 228(2):256-69. PubMed ID: 11112328 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]