BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16466738)

  • 1. Gas exchange characteristics, metabolic rate and water loss of the Heelwalker, Karoophasma biedouwensis (Mantophasmatodea: Austrophasmatidae).
    Chown SL; Marais E; Picker MD; Terblanche JS
    J Insect Physiol; 2006 May; 52(5):442-9. PubMed ID: 16466738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation.
    Terblanche JS; Clusella-Trullas S; Chown SL
    J Exp Biol; 2010 Sep; 213(Pt 17):2940-9. PubMed ID: 20709922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of discontinuous gas exchange in insects: the chthonic hypothesis does not hold water.
    Gibbs AG; Johnson RA
    J Exp Biol; 2004 Sep; 207(Pt 20):3477-82. PubMed ID: 15339943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature- and body mass-related variation in cyclic gas exchange characteristics and metabolic rate of seven weevil species: Broader implications.
    Klok CJ; Chown SL
    J Insect Physiol; 2005 Jul; 51(7):789-801. PubMed ID: 15907926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discontinuous carbon dioxide release in the German cockroach, Blattella germanica (Dictyoptera: Blattellidae), and its effect on respiratory transpiration.
    Dingha BN; Appel AG; Eubanks MD
    J Insect Physiol; 2005 Jul; 51(7):825-36. PubMed ID: 15936769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology.
    Clusella-Trullas S; Chown SL
    J Exp Biol; 2008 Oct; 211(Pt 19):3139-46. PubMed ID: 18805813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas exchange patterns and water loss rates in the Table Mountain cockroach, Aptera fusca (Blattodea: Blaberidae).
    Groenewald B; Bazelet CS; Potter CP; Terblanche JS
    J Exp Biol; 2013 Oct; 216(Pt 20):3844-53. PubMed ID: 23821716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hyperoxic switch: assessing respiratory water loss rates in tracheate arthropods with continuous gas exchange.
    Lighton JR; Schilman PE; Holway DA
    J Exp Biol; 2004 Dec; 207(Pt 25):4463-71. PubMed ID: 15557031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interplay of cutaneous water loss, gas exchange and blood flow in the toad, Bufo woodhousei: adaptations in a terrestrially adapted amphibian.
    Burggren WW; Vitalis TZ
    J Exp Biol; 2005 Jan; 208(Pt 1):105-12. PubMed ID: 15601882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insect gas exchange patterns: a phylogenetic perspective.
    Marais E; Klok CJ; Terblanche JS; Chown SL
    J Exp Biol; 2005 Dec; 208(Pt 23):4495-507. PubMed ID: 16339869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning of transpiratory water loss of the desert scorpion, Hadrurus arizonensis (Iuridae).
    Gefen E; Ung C; Gibbs AG
    J Insect Physiol; 2009 Jun; 55(6):544-8. PubMed ID: 19232406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bias, precision and accuracy in the estimation of cuticular and respiratory water loss: a case study from a highly variable cockroach, Perisphaeria sp.
    Gray EM; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):169-79. PubMed ID: 17949739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of ambient humidity and metabolic rate on the gas-exchange pattern of the semi-aquatic insect Aquarius remigis.
    Contreras HL; Bradley TJ
    J Exp Biol; 2011 Apr; 214(Pt 7):1086-91. PubMed ID: 21389192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic gas exchange in the giant burrowing cockroach, Macropanesthia rhinoceros: effect of oxygen tension and temperature.
    Woodman JD; Cooper PD; Haritos VS
    J Insect Physiol; 2007 May; 53(5):497-504. PubMed ID: 17374539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sampling regime on estimation of basal metabolic rate and standard evaporative water loss using flow-through respirometry.
    Cooper CE; Withers PC
    Physiol Biochem Zool; 2010; 83(2):385-93. PubMed ID: 20121421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hygric hypothesis does not hold water: abolition of discontinuous gas exchange cycles does not affect water loss in the ant Camponotus vicinus.
    Lighton JR; Turner RJ
    J Exp Biol; 2008 Feb; 211(Pt 4):563-7. PubMed ID: 18245633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breathe softly, beetle: continuous gas exchange, water loss and the role of the subelytral space in the tenebrionid beetle, Eleodes obscura.
    Schilman PE; Kaiser A; Lighton JR
    J Insect Physiol; 2008 Jan; 54(1):192-203. PubMed ID: 17936295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matching spiracle opening to metabolic need during flight in Drosophila.
    Lehmann FO
    Science; 2001 Nov; 294(5548):1926-9. PubMed ID: 11729318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discontinuous gas exchange, water loss, and metabolism in Protaetia cretica (Cetoniinae, Scarabaeidae).
    Matthews PG; White CR
    Physiol Biochem Zool; 2012; 85(2):174-82. PubMed ID: 22418709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic gas-exchange in the Chilean red cricket: inter-individual variation and thermal dependence.
    Nespolo RF; Artacho P; CastaƱeda LE
    J Exp Biol; 2007 Feb; 210(Pt 4):668-75. PubMed ID: 17267652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.