These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 16466738)

  • 1. Gas exchange characteristics, metabolic rate and water loss of the Heelwalker, Karoophasma biedouwensis (Mantophasmatodea: Austrophasmatidae).
    Chown SL; Marais E; Picker MD; Terblanche JS
    J Insect Physiol; 2006 May; 52(5):442-9. PubMed ID: 16466738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenotypic plasticity of gas exchange pattern and water loss in Scarabaeus spretus (Coleoptera: Scarabaeidae): deconstructing the basis for metabolic rate variation.
    Terblanche JS; Clusella-Trullas S; Chown SL
    J Exp Biol; 2010 Sep; 213(Pt 17):2940-9. PubMed ID: 20709922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of discontinuous gas exchange in insects: the chthonic hypothesis does not hold water.
    Gibbs AG; Johnson RA
    J Exp Biol; 2004 Sep; 207(Pt 20):3477-82. PubMed ID: 15339943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature- and body mass-related variation in cyclic gas exchange characteristics and metabolic rate of seven weevil species: Broader implications.
    Klok CJ; Chown SL
    J Insect Physiol; 2005 Jul; 51(7):789-801. PubMed ID: 15907926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discontinuous carbon dioxide release in the German cockroach, Blattella germanica (Dictyoptera: Blattellidae), and its effect on respiratory transpiration.
    Dingha BN; Appel AG; Eubanks MD
    J Insect Physiol; 2005 Jul; 51(7):825-36. PubMed ID: 15936769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating onychophoran gas exchange and water balance as a means to inform current controversies in arthropod physiology.
    Clusella-Trullas S; Chown SL
    J Exp Biol; 2008 Oct; 211(Pt 19):3139-46. PubMed ID: 18805813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas exchange patterns and water loss rates in the Table Mountain cockroach, Aptera fusca (Blattodea: Blaberidae).
    Groenewald B; Bazelet CS; Potter CP; Terblanche JS
    J Exp Biol; 2013 Oct; 216(Pt 20):3844-53. PubMed ID: 23821716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hyperoxic switch: assessing respiratory water loss rates in tracheate arthropods with continuous gas exchange.
    Lighton JR; Schilman PE; Holway DA
    J Exp Biol; 2004 Dec; 207(Pt 25):4463-71. PubMed ID: 15557031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The interplay of cutaneous water loss, gas exchange and blood flow in the toad, Bufo woodhousei: adaptations in a terrestrially adapted amphibian.
    Burggren WW; Vitalis TZ
    J Exp Biol; 2005 Jan; 208(Pt 1):105-12. PubMed ID: 15601882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insect gas exchange patterns: a phylogenetic perspective.
    Marais E; Klok CJ; Terblanche JS; Chown SL
    J Exp Biol; 2005 Dec; 208(Pt 23):4495-507. PubMed ID: 16339869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Partitioning of transpiratory water loss of the desert scorpion, Hadrurus arizonensis (Iuridae).
    Gefen E; Ung C; Gibbs AG
    J Insect Physiol; 2009 Jun; 55(6):544-8. PubMed ID: 19232406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bias, precision and accuracy in the estimation of cuticular and respiratory water loss: a case study from a highly variable cockroach, Perisphaeria sp.
    Gray EM; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):169-79. PubMed ID: 17949739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of ambient humidity and metabolic rate on the gas-exchange pattern of the semi-aquatic insect Aquarius remigis.
    Contreras HL; Bradley TJ
    J Exp Biol; 2011 Apr; 214(Pt 7):1086-91. PubMed ID: 21389192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic gas exchange in the giant burrowing cockroach, Macropanesthia rhinoceros: effect of oxygen tension and temperature.
    Woodman JD; Cooper PD; Haritos VS
    J Insect Physiol; 2007 May; 53(5):497-504. PubMed ID: 17374539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of sampling regime on estimation of basal metabolic rate and standard evaporative water loss using flow-through respirometry.
    Cooper CE; Withers PC
    Physiol Biochem Zool; 2010; 83(2):385-93. PubMed ID: 20121421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The hygric hypothesis does not hold water: abolition of discontinuous gas exchange cycles does not affect water loss in the ant Camponotus vicinus.
    Lighton JR; Turner RJ
    J Exp Biol; 2008 Feb; 211(Pt 4):563-7. PubMed ID: 18245633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breathe softly, beetle: continuous gas exchange, water loss and the role of the subelytral space in the tenebrionid beetle, Eleodes obscura.
    Schilman PE; Kaiser A; Lighton JR
    J Insect Physiol; 2008 Jan; 54(1):192-203. PubMed ID: 17936295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Matching spiracle opening to metabolic need during flight in Drosophila.
    Lehmann FO
    Science; 2001 Nov; 294(5548):1926-9. PubMed ID: 11729318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discontinuous gas exchange, water loss, and metabolism in Protaetia cretica (Cetoniinae, Scarabaeidae).
    Matthews PG; White CR
    Physiol Biochem Zool; 2012; 85(2):174-82. PubMed ID: 22418709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cyclic gas-exchange in the Chilean red cricket: inter-individual variation and thermal dependence.
    Nespolo RF; Artacho P; CastaƱeda LE
    J Exp Biol; 2007 Feb; 210(Pt 4):668-75. PubMed ID: 17267652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.