These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 16466741)

  • 1. Amyloid formation by recombinant full-length prion proteins in phospholipid bicelle solutions.
    Lührs T; Zahn R; Wüthrich K
    J Mol Biol; 2006 Mar; 357(3):833-41. PubMed ID: 16466741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen/deuterium exchange mass spectrometry identifies two highly protected regions in recombinant full-length prion protein amyloid fibrils.
    Nazabal A; Hornemann S; Aguzzi A; Zenobi R
    J Mass Spectrom; 2009 Jun; 44(6):965-77. PubMed ID: 19283723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro conversion of full-length mammalian prion protein produces amyloid form with physical properties of PrP(Sc).
    Bocharova OV; Breydo L; Parfenov AS; Salnikov VV; Baskakov IV
    J Mol Biol; 2005 Feb; 346(2):645-59. PubMed ID: 15670611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous and BSE-prion-seeded amyloid formation of full length recombinant bovine prion protein.
    Panza G; Stöhr J; Dumpitak C; Papathanassiou D; Weiss J; Riesner D; Willbold D; Birkmann E
    Biochem Biophys Res Commun; 2008 Sep; 373(4):493-7. PubMed ID: 18585368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PrP N-terminal domain triggers PrP(Sc)-like aggregation of Dpl.
    Erlich P; Cesbron JY; Lemaire-Vieille C; Curt A; Andrieu JP; Schoehn G; Jamin M; Gagnon J
    Biochem Biophys Res Commun; 2008 Jan; 365(3):478-83. PubMed ID: 17997980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansion of the octarepeat domain alters the misfolding pathway but not the folding pathway of the prion protein.
    Leliveld SR; Stitz L; Korth C
    Biochemistry; 2008 Jun; 47(23):6267-78. PubMed ID: 18473442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper(II) inhibits in vitro conversion of prion protein into amyloid fibrils.
    Bocharova OV; Breydo L; Salnikov VV; Baskakov IV
    Biochemistry; 2005 May; 44(18):6776-87. PubMed ID: 15865423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assembly of natural and recombinant prion protein into fibrils.
    Leffers KW; Wille H; Stöhr J; Junger E; Prusiner SB; Riesner D
    Biol Chem; 2005 Jun; 386(6):569-80. PubMed ID: 16006244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scrapie infectivity is independent of amyloid staining properties of the N-terminally truncated prion protein.
    Wille H; Prusiner SB; Cohen FE
    J Struct Biol; 2000 Jun; 130(2-3):323-38. PubMed ID: 10940236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular model of an alpha-helical prion protein dimer and its monomeric subunits as derived from chemical cross-linking and molecular modeling calculations.
    Kaimann T; Metzger S; Kuhlmann K; Brandt B; Birkmann E; Höltje HD; Riesner D
    J Mol Biol; 2008 Feb; 376(2):582-96. PubMed ID: 18158160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation/fibrillogenesis of recombinant human prion protein and Gerstmann-Sträussler-Scheinker disease peptides in the presence of metal ions.
    Ricchelli F; Buggio R; Drago D; Salmona M; Forloni G; Negro A; Tognon G; Zatta P
    Biochemistry; 2006 May; 45(21):6724-32. PubMed ID: 16716083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibril conformation as the basis of species- and strain-dependent seeding specificity of mammalian prion amyloids.
    Jones EM; Surewicz WK
    Cell; 2005 Apr; 121(1):63-72. PubMed ID: 15820679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core structure of amyloid fibrils formed by residues 106-126 of the human prion protein.
    Walsh P; Simonetti K; Sharpe S
    Structure; 2009 Mar; 17(3):417-26. PubMed ID: 19278656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro conversion of mammalian prion protein into amyloid fibrils displays unusual features.
    Baskakov IV; Bocharova OV
    Biochemistry; 2005 Feb; 44(7):2339-48. PubMed ID: 15709746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Full-length prion protein aggregates to amyloid fibrils and spherical particles by distinct pathways.
    El Moustaine D; Perrier V; Smeller L; Lange R; Torrent J
    FEBS J; 2008 May; 275(9):2021-31. PubMed ID: 18355314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of soluble oligomers and amyloid fibrils with physical properties of the scrapie isoform of the prion protein from the C-terminal domain of recombinant murine prion protein mPrP-(121-231).
    Martins SM; Frosoni DJ; Martinez AM; De Felice FG; Ferreira ST
    J Biol Chem; 2006 Sep; 281(36):26121-8. PubMed ID: 16844683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shaking alone induces de novo conversion of recombinant prion proteins to β-sheet rich oligomers and fibrils.
    Ladner-Keay CL; Griffith BJ; Wishart DS
    PLoS One; 2014; 9(6):e98753. PubMed ID: 24892647
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray diffraction analysis of scrapie prion: intermediate and folded structures in a peptide containing two putative alpha-helices.
    Inouye H; Kirschner DA
    J Mol Biol; 1997 May; 268(2):375-89. PubMed ID: 9159477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid formation of amyloid from alpha-monomeric recombinant human PrP in vitro.
    Tahiri-Alaoui A; James W
    Protein Sci; 2005 Apr; 14(4):942-7. PubMed ID: 15741327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic force microscopy to characterize the molecular size of prion protein.
    Kunze S; Lemke K; Metze J; Bloukas G; Kotta K; Panagiotidis CH; Sklaviadis T; Bodemer W
    J Microsc; 2008 May; 230(Pt 2):224-32. PubMed ID: 18445151
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.