BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 16466871)

  • 1. Increased resistance to free radical damage induced by low-level sound conditioning.
    Harris KC; Bielefeld E; Hu BH; Henderson D
    Hear Res; 2006 Mar; 213(1-2):118-29. PubMed ID: 16466871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sound preconditioning on hearing loss from low or middle-frequency noise exposure.
    Liu YG; He YJ; Li DD; Zheng SX; Niu CM
    Space Med Med Eng (Beijing); 2000 Oct; 13(5):313-7. PubMed ID: 11894866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss.
    Kopke RD; Coleman JK; Liu J; Campbell KC; Riffenburgh RH
    Laryngoscope; 2002 Sep; 112(9):1515-32. PubMed ID: 12352659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of acoustic environment after traumatic noise exposure on hearing and outer hair cells.
    Tanaka C; Chen GD; Hu BH; Chi LH; Li M; Zheng G; Bielefeld EC; Jamesdaniel S; Coling D; Henderson D
    Hear Res; 2009 Apr; 250(1-2):10-8. PubMed ID: 19450428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in cochlear antioxidant enzyme activity after sound conditioning and noise exposure in the chinchilla.
    Jacono AA; Hu B; Kopke RD; Henderson D; Van De Water TR; Steinman HM
    Hear Res; 1998 Mar; 117(1-2):31-8. PubMed ID: 9557976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of superoxide dismutase and allopurinol on impulse noise-exposed guinea pigs--electrophysiological and biochemical study.
    Cassandro E; Sequino L; Mondola P; Attanasio G; Barbara M; Filipo R
    Acta Otolaryngol; 2003 Sep; 123(7):802-7. PubMed ID: 14575394
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degeneration in the cochlea after noise damage: primary versus secondary events.
    Bohne BA; Harding GW
    Am J Otol; 2000 Jul; 21(4):505-9. PubMed ID: 10912695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effectiveness of 4-hydroxy phenyl N-tert-butylnitrone (4-OHPBN) alone and in combination with other antioxidant drugs in the treatment of acute acoustic trauma in chinchilla.
    Choi CH; Chen K; Vasquez-Weldon A; Jackson RL; Floyd RA; Kopke RD
    Free Radic Biol Med; 2008 May; 44(9):1772-84. PubMed ID: 18328271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of the kurtosis statistic in evaluating complex noise exposures for the protection of hearing.
    Davis RI; Qiu W; Hamernik RP
    Ear Hear; 2009 Oct; 30(5):628-34. PubMed ID: 19657275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise induces A1 adenosine receptor expression in the chinchilla cochlea.
    Ramkumar V; Whitworth CA; Pingle SC; Hughes LF; Rybak LP
    Hear Res; 2004 Feb; 188(1-2):47-56. PubMed ID: 14759570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effectiveness of N-acetyl-L-cysteine (L-NAC) in the prevention of severe noise-induced hearing loss.
    Hamernik RP; Qiu W; Davis B
    Hear Res; 2008 May; 239(1-2):99-106. PubMed ID: 18329204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuroprotective effects of T-817MA against noise-induced hearing loss.
    Yamashita D; Shiotani A; Kanzaki S; Nakagawa M; Ogawa K
    Neurosci Res; 2008 May; 61(1):38-42. PubMed ID: 18343519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noise-induced time-dependent changes in oxidative stress in the mouse cochlea and attenuation by D-methionine.
    Samson J; Wiktorek-Smagur A; Politanski P; Rajkowska E; Pawlaczyk-Luszczynska M; Dudarewicz A; Sha SH; Schacht J; Sliwinska-Kowalska M
    Neuroscience; 2008 Mar; 152(1):146-50. PubMed ID: 18234425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protection from noise-induced temporary threshold shift by D-methionine is associated with preservation of ATPase activities.
    Cheng PW; Liu SH; Young YH; Hsu CJ; Lin-Shiau SY
    Ear Hear; 2008 Jan; 29(1):65-75. PubMed ID: 18091106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protection against noise trauma by sound conditioning.
    Canlon B
    Ear Nose Throat J; 1997 Apr; 76(4):248-50, 253-5. PubMed ID: 9127524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Damage and threshold shift resulting from cochlear exposure to paraquat-generated superoxide.
    Bielefeld EC; Hu BH; Harris KC; Henderson D
    Hear Res; 2005 Sep; 207(1-2):35-42. PubMed ID: 15935579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of focal lesions in the chinchilla organ of Corti following exposure to a 4-kHz or a 0.5-kHz octave band of noise.
    Harding GW; Bohne BA
    Hear Res; 2007 Mar; 225(1-2):50-9. PubMed ID: 17291699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relation of focal hair-cell lesions to noise-exposure parameters from a 4- or a 0.5-kHz octave band of noise.
    Harding GW; Bohne BA
    Hear Res; 2009 Aug; 254(1-2):54-63. PubMed ID: 19393307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protective effects of phenyl-N-tert-butylnitrone on the potentiation of noise-induced hearing loss by carbon monoxide.
    Rao D; Fechter LD
    Toxicol Appl Pharmacol; 2000 Sep; 167(2):125-31. PubMed ID: 10964763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acoustical stress and hearing sensitivity in fishes: does the linear threshold shift hypothesis hold water?
    Smith ME; Kane AS; Popper AN
    J Exp Biol; 2004 Sep; 207(Pt 20):3591-602. PubMed ID: 15339955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.