These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 16467351)

  • 1. Opposite effects of daylength and temperature on flowering and summer dormancy of Poa bulbosa.
    Ofir M; Kigel J
    Ann Bot; 2006 Apr; 97(4):659-66. PubMed ID: 16467351
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ecotypic variation of summer dormancy relaxation associated with rainfall gradient in the geophytic grass Poa bulbosa.
    Ofir M; Kigel J
    Ann Bot; 2010 Apr; 105(4):617-25. PubMed ID: 20156924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in onset of summer dormancy and flowering capacity along an aridity gradient in Poa bulbosa L., a geophytic perennial grass.
    Ofir M; Kigel J
    Ann Bot; 2003 Feb; 91(3):391-400. PubMed ID: 12547692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal and intraclonal variation of flowering and pseudovivipary in Poa bulbosa.
    Ofir M; Kigel J
    Ann Bot; 2014 Jun; 113(7):1249-56. PubMed ID: 24685715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of summer dormancy by water deficit and ABA in Poa bulbosa ecotypes.
    Ofir M; Kigel J
    Ann Bot; 2007 Feb; 99(2):293-9. PubMed ID: 17202183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of flowering and reproduction in temperate grasses.
    Heide OM
    New Phytol; 1994 Oct; 128(2):347-362. PubMed ID: 33874362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water deficit and induction of summer dormancy in perennial Mediterranean grasses.
    Volaire F; Seddaiu G; Ledda L; Lelievre F
    Ann Bot; 2009 Jun; 103(8):1337-46. PubMed ID: 19369219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-driven plasticity in growth cessation and dormancy development in deciduous woody plants: a working hypothesis suggesting how molecular and cellular function is affected by temperature during dormancy induction.
    Tanino KK; Kalcsits L; Silim S; Kendall E; Gray GR
    Plant Mol Biol; 2010 May; 73(1-2):49-65. PubMed ID: 20191309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus.
    Rinne PLH; Paul LK; van der Schoot C
    BMC Plant Biol; 2018 Oct; 18(1):220. PubMed ID: 30290771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influences of daylength and temperature on the period of diapause and its ending process in dormant larvae of burnet moths (Lepidoptera, Zygaenidae).
    Wipking W
    Oecologia; 1995 May; 102(2):202-210. PubMed ID: 28306875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in phenological events in response to a global warming scenario reveal greater adaptability of winter annual compared with summer annual arabidopsis ecotypes.
    Footitt S; Hambidge AJ; Finch-Savage WE
    Ann Bot; 2021 Jan; 127(1):111-122. PubMed ID: 32722794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of summer drought on the yield of Arundo donax is reduced by the retention of photosynthetic capacity and leaf growth later in the growing season.
    Haworth M; Marino G; Riggi E; Avola G; Brunetti C; Scordia D; Testa G; Thiago Gaudio Gomes M; Loreto F; Luciano Cosentino S; Centritto M
    Ann Bot; 2019 Oct; 124(4):567-580. PubMed ID: 30566593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal adaptations to day length in ecotypes of Diorhabda spp. (Coleoptera: Chrysomelidae) inform selection of agents against saltcedars (Tamarix spp.).
    Dalin P; Bean DW; Dudley TL; Carney VA; Eberts D; Gardner KT; Hebertson E; Jones EN; Kazmer DJ; Michels GJ; O'Meara SA; Thompson DC
    Environ Entomol; 2010 Oct; 39(5):1666-75. PubMed ID: 22546466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of temperature on reproduction in the summer and winter annual Arabidopsis thaliana ecotypes Bur and Cvi.
    Huang Z; Footitt S; Finch-Savage WE
    Ann Bot; 2014 May; 113(6):921-9. PubMed ID: 24573642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different responses of northern and southern ecotypes of Betula pendula to exogenous ABA application.
    Li C; Junttila O; Heino P; Palva ET
    Tree Physiol; 2003 May; 23(7):481-7. PubMed ID: 12670802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.
    Busch F; Hüner NP; Ensminger I
    Plant Physiol; 2007 Mar; 143(3):1242-51. PubMed ID: 17259287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential responses of silver birch (Betula pendula) ecotypes to short-day photoperiod and low temperature.
    Li C; Welling A; Puhakainen T; Viherä-Aarnio A; Ernstsen A; Junttila O; Heino P; Palva ET
    Tree Physiol; 2005 Dec; 25(12):1563-9. PubMed ID: 16137942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inflorescence shoot elongation, but not flower primordia formation, is photoperiodically regulated in Arabidopsis lyrata.
    Kemi U; Leinonen PH; Savolainen O; Kuittinen H
    Ann Bot; 2019 Aug; 124(1):91-102. PubMed ID: 31321402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond floral initiation: the role of flower bud dormancy in flowering time control of annual plants.
    Penfield S
    J Exp Bot; 2024 Oct; 75(19):6056-6062. PubMed ID: 38795335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoperiodic control of dormancy in Sedum telephium and some other herbaceous perennial plants.
    Heide OM
    Physiol Plant; 2001 Nov; 113(3):332-337. PubMed ID: 12060277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.