BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 16467386)

  • 1. Splicing speckles are not reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on serine2 residues of the C-terminal domain.
    Xie SQ; Martin S; Guillot PV; Bentley DL; Pombo A
    Mol Biol Cell; 2006 Apr; 17(4):1723-33. PubMed ID: 16467386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human transcription elongation factor CA150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions.
    Sánchez-Alvarez M; Goldstrohm AC; Garcia-Blanco MA; Suñé C
    Mol Cell Biol; 2006 Jul; 26(13):4998-5014. PubMed ID: 16782886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fixation-induced redistribution of hyperphosphorylated RNA polymerase II in the nucleus of human cells.
    Guillot PV; Xie SQ; Hollinshead M; Pombo A
    Exp Cell Res; 2004 May; 295(2):460-8. PubMed ID: 15093744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SRSF1 regulates the assembly of pre-mRNA processing factors in nuclear speckles.
    Tripathi V; Song DY; Zong X; Shevtsov SP; Hearn S; Fu XD; Dundr M; Prasanth KV
    Mol Biol Cell; 2012 Sep; 23(18):3694-706. PubMed ID: 22855529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A serine/arginine-rich nuclear matrix cyclophilin interacts with the C-terminal domain of RNA polymerase II.
    Bourquin JP; Stagljar I; Meier P; Moosmann P; Silke J; Baechi T; Georgiev O; Schaffner W
    Nucleic Acids Res; 1997 Jun; 25(11):2055-61. PubMed ID: 9153302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates.
    Guo YE; Manteiga JC; Henninger JE; Sabari BR; Dall'Agnese A; Hannett NM; Spille JH; Afeyan LK; Zamudio AV; Shrinivas K; Abraham BJ; Boija A; Decker TM; Rimel JK; Fant CB; Lee TI; Cisse II; Sharp PA; Taatjes DJ; Young RA
    Nature; 2019 Aug; 572(7770):543-548. PubMed ID: 31391587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prespliceosomal assembly on microinjected precursor mRNA takes place in nuclear speckles.
    Melcák I; Melcáková S; Kopský V; Vecerová J; Raska I
    Mol Biol Cell; 2001 Feb; 12(2):393-406. PubMed ID: 11179423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lamin A/C speckles mediate spatial organization of splicing factor compartments and RNA polymerase II transcription.
    Kumaran RI; Muralikrishna B; Parnaik VK
    J Cell Biol; 2002 Dec; 159(5):783-93. PubMed ID: 12473687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Herpes simplex virus type 1 infection leads to loss of serine-2 phosphorylation on the carboxyl-terminal domain of RNA polymerase II.
    Fraser KA; Rice SA
    J Virol; 2005 Sep; 79(17):11323-34. PubMed ID: 16103184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamics of a pre-mRNA splicing factor in living cells.
    Misteli T; Cáceres JF; Spector DL
    Nature; 1997 May; 387(6632):523-7. PubMed ID: 9168118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SR and SR-related proteins redistribute to segregated fibrillar components of nucleoli in a response to DNA damage.
    Sakashita E; Endo H
    Nucleus; 2010; 1(4):367-80. PubMed ID: 21327085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional visualization of transcription sites and their association with splicing factor-rich nuclear speckles.
    Wei X; Somanathan S; Samarabandu J; Berezney R
    J Cell Biol; 1999 Aug; 146(3):543-58. PubMed ID: 10444064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic relocation of transcription and splicing factors dependent upon transcriptional activity.
    Zeng C; Kim E; Warren SL; Berget SM
    EMBO J; 1997 Mar; 16(6):1401-12. PubMed ID: 9135155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear speckle integrity and function require TAO2 kinase.
    Gao S; Esparza M; Dehghan I; Aksenova V; Zhang K; Batten K; Ferretti MB; Begg BE; Cagatay T; Shay JW; García-Sastre A; Goldsmith EJ; Chen ZJ; Dasso M; Lynch KW; Cobb MH; Fontoura BMA
    Proc Natl Acad Sci U S A; 2022 Jun; 119(25):e2206046119. PubMed ID: 35704758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcription-dependent redistribution of the large subunit of RNA polymerase II to discrete nuclear domains.
    Bregman DB; Du L; van der Zee S; Warren SL
    J Cell Biol; 1995 Apr; 129(2):287-98. PubMed ID: 7536746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA Polymerase II Phosphorylated on CTD Serine 5 Interacts with the Spliceosome during Co-transcriptional Splicing.
    Nojima T; Rebelo K; Gomes T; Grosso AR; Proudfoot NJ; Carmo-Fonseca M
    Mol Cell; 2018 Oct; 72(2):369-379.e4. PubMed ID: 30340024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Splicing inhibition decreases phosphorylation level of Ser2 in Pol II CTD.
    Koga M; Hayashi M; Kaida D
    Nucleic Acids Res; 2015 Sep; 43(17):8258-67. PubMed ID: 26202968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Splicing factors associate with hyperphosphorylated RNA polymerase II in the absence of pre-mRNA.
    Kim E; Du L; Bregman DB; Warren SL
    J Cell Biol; 1997 Jan; 136(1):19-28. PubMed ID: 9008700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo.
    Misteli T; Cáceres JF; Clement JQ; Krainer AR; Wilkinson MF; Spector DL
    J Cell Biol; 1998 Oct; 143(2):297-307. PubMed ID: 9786943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA polymerase II targets pre-mRNA splicing factors to transcription sites in vivo.
    Misteli T; Spector DL
    Mol Cell; 1999 Jun; 3(6):697-705. PubMed ID: 10394358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.