These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 16467421)

  • 41. Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat.
    Dejean C; Gross CE; Bioulac B; Boraud T
    J Neurophysiol; 2008 Jul; 100(1):385-96. PubMed ID: 18497362
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Motion adaptation leads to parsimonious encoding of natural optic flow by blowfly motion vision system.
    Heitwerth J; Kern R; van Hateren JH; Egelhaaf M
    J Neurophysiol; 2005 Sep; 94(3):1761-9. PubMed ID: 15917319
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-frequency phase locking in human somatosensory cortex.
    Langdon AJ; Boonstra TW; Breakspear M
    Prog Biophys Mol Biol; 2011 Mar; 105(1-2):58-66. PubMed ID: 20869386
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sodium pumps adapt spike bursting to stimulus statistics.
    Arganda S; Guantes R; de Polavieja GG
    Nat Neurosci; 2007 Nov; 10(11):1467-73. PubMed ID: 17906619
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shifting and scaling adaptation to dynamic stimuli in somatosensory cortex.
    Garcia-Lazaro JA; Ho SS; Nair A; Schnupp JW
    Eur J Neurosci; 2007 Oct; 26(8):2359-68. PubMed ID: 17953623
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A challenge to chaotic itinerancy from brain dynamics.
    Kay LM
    Chaos; 2003 Sep; 13(3):1057-66. PubMed ID: 12946199
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stimulus-dependent changes in spike threshold enhance feature selectivity in rat barrel cortex neurons.
    Wilent WB; Contreras D
    J Neurosci; 2005 Mar; 25(11):2983-91. PubMed ID: 15772358
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Slow adaptation in fast-spiking neurons of visual cortex.
    Descalzo VF; Nowak LG; Brumberg JC; McCormick DA; Sanchez-Vives MV
    J Neurophysiol; 2005 Feb; 93(2):1111-8. PubMed ID: 15385594
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Encoding and decoding cortical representations of tactile features in the vibrissa system.
    Boloori AR; Jenks RA; Desbordes G; Stanley GB
    J Neurosci; 2010 Jul; 30(30):9990-10005. PubMed ID: 20668184
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pulse activity of populations of cortical neurons under microwave exposures of different intensity.
    Chizhenkova RA
    Bioelectrochemistry; 2004 Jun; 63(1-2):343-6. PubMed ID: 15110300
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Relation between activities of the cortex and vibrissae muscles during high-voltage rhythmic spike discharges in rats.
    Shaw FZ; Liao YF
    J Neurophysiol; 2005 May; 93(5):2435-48. PubMed ID: 15625092
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Motion adaptation and the velocity coding of natural scenes.
    Barnett PD; Nordström K; O'Carroll DC
    Curr Biol; 2010 Jun; 20(11):994-9. PubMed ID: 20537540
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distributed representation of vibrissa movement in the upper layers of somatosensory cortex revealed with voltage-sensitive dyes.
    Kleinfeld D; Delaney KR
    J Comp Neurol; 1996 Nov; 375(1):89-108. PubMed ID: 8913895
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Coherent electrical activity between vibrissa sensory areas of cerebellum and neocortex is enhanced during free whisking.
    O'Connor SM; Berg RW; Kleinfeld D
    J Neurophysiol; 2002 Apr; 87(4):2137-48. PubMed ID: 11929931
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptation of Thalamic Neurons Provides Information about the Spatiotemporal Context of Stimulus History.
    Liu C; Foffani G; Scaglione A; Aguilar J; Moxon KA
    J Neurosci; 2017 Oct; 37(41):10012-10021. PubMed ID: 28899918
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Encoder adaptation modulates the visual responses of crayfish interneurons.
    Glantz RM; Schroeter JP
    J Neurophysiol; 2004 Jul; 92(1):327-40. PubMed ID: 15028740
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuronal mechanisms encoding global-to-fine information in inferior-temporal cortex.
    Matsumoto N; Okada M; Sugase-Miyamoto Y; Yamane S
    J Comput Neurosci; 2005; 18(1):85-103. PubMed ID: 15789171
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improved tracking of time-varying encoding properties of visual neurons by extended recursive least-squares.
    Lesica NA; Stanley GB
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):194-200. PubMed ID: 16003899
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Absence of rapid sensory adaptation in neocortex during information processing states.
    Castro-Alamancos MA
    Neuron; 2004 Feb; 41(3):455-64. PubMed ID: 14766183
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The adaptive trade-off between detection and discrimination in cortical representations and behavior.
    Ollerenshaw DR; Zheng HJV; Millard DC; Wang Q; Stanley GB
    Neuron; 2014 Mar; 81(5):1152-1164. PubMed ID: 24607233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.