These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 16467477)

  • 21. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins.
    Polevoda B; Sherman F
    J Mol Biol; 2003 Jan; 325(4):595-622. PubMed ID: 12507466
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Basis of Substrate Specific Acetylation by N-Terminal Acetyltransferase NatB.
    Hong H; Cai Y; Zhang S; Ding H; Wang H; Han A
    Structure; 2017 Apr; 25(4):641-649.e3. PubMed ID: 28380339
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expanded in vivo substrate profile of the yeast N-terminal acetyltransferase NatC.
    Van Damme P; Osberg C; Jonckheere V; Glomnes N; Gevaert K; Arnesen T; Aksnes H
    J Biol Chem; 2023 Feb; 299(2):102824. PubMed ID: 36567016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of the human N(alpha)-acetyltransferase complex B (hNatB): a complex important for cell-cycle progression.
    Starheim KK; Arnesen T; Gromyko D; Ryningen A; Varhaug JE; Lillehaug JR
    Biochem J; 2008 Oct; 415(2):325-31. PubMed ID: 18570629
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physical mapping and cloning of RAD56.
    Mathiasen DP; Gallina I; Germann SM; Hamou W; Eléouët M; Thodberg S; Eckert-Boulet N; Game J; Lisby M
    Gene; 2013 Apr; 519(1):182-6. PubMed ID: 23403232
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and specificities of N-terminal acetyltransferases from Saccharomyces cerevisiae.
    Polevoda B; Norbeck J; Takakura H; Blomberg A; Sherman F
    EMBO J; 1999 Nov; 18(21):6155-68. PubMed ID: 10545125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Saccharomyces cerevisiae model reveals in vivo functional impairment of the Ogden syndrome N-terminal acetyltransferase NAA10 Ser37Pro mutant.
    Van Damme P; Støve SI; Glomnes N; Gevaert K; Arnesen T
    Mol Cell Proteomics; 2014 Aug; 13(8):2031-41. PubMed ID: 24408909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. N(α)-Acetylation of yeast ribosomal proteins and its effect on protein synthesis.
    Kamita M; Kimura Y; Ino Y; Kamp RM; Polevoda B; Sherman F; Hirano H
    J Proteomics; 2011 Apr; 74(4):431-41. PubMed ID: 21184851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular basis for N-terminal alpha-synuclein acetylation by human NatB.
    Deng S; Pan B; Gottlieb L; Petersson EJ; Marmorstein R
    Elife; 2020 Sep; 9():. PubMed ID: 32885784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-terminal acetylation modulates Bax targeting to mitochondria.
    Alves S; Neiri L; Chaves SR; Vieira S; Trindade D; Manon S; Dominguez V; Pintado B; Jonckheere V; Van Damme P; Silva RD; Aldabe R; Côrte-Real M
    Int J Biochem Cell Biol; 2018 Feb; 95():35-42. PubMed ID: 29233735
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NatC Nalpha-terminal acetyltransferase of yeast contains three subunits, Mak3p, Mak10p, and Mak31p.
    Polevoda B; Sherman F
    J Biol Chem; 2001 Jun; 276(23):20154-9. PubMed ID: 11274203
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NatB Protects Procaspase-8 from UBR4-Mediated Degradation and Is Required for Full Induction of the Extrinsic Apoptosis Pathway.
    Guedes JP; Boyer JB; Elurbide J; Carte B; Redeker V; Sago L; Meinnel T; Côrte-Real M; Giglione C; Aldabe R
    Mol Cell Biol; 2024; 44(9):358-371. PubMed ID: 39099191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Histone H3 specific acetyltransferases are essential for cell cycle progression.
    Howe L; Auston D; Grant P; John S; Cook RG; Workman JL; Pillus L
    Genes Dev; 2001 Dec; 15(23):3144-54. PubMed ID: 11731478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The action of N-terminal acetyltransferases on yeast ribosomal proteins.
    Arnold RJ; Polevoda B; Reilly JP; Sherman F
    J Biol Chem; 1999 Dec; 274(52):37035-40. PubMed ID: 10601260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Missense NAA20 variants impairing the NatB protein N-terminal acetyltransferase cause autosomal recessive developmental delay, intellectual disability, and microcephaly.
    Morrison J; Altuwaijri NK; Brønstad K; Aksnes H; Alsaif HS; Evans A; Hashem M; Wheeler PG; Webb BD; Alkuraya FS; Arnesen T
    Genet Med; 2021 Nov; 23(11):2213-2218. PubMed ID: 34230638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asf1 in Saccharomyces cerevisiae.
    Meijsing SH; Ehrenhofer-Murray AE
    Genes Dev; 2001 Dec; 15(23):3169-82. PubMed ID: 11731480
    [TBL] [Abstract][Full Text] [Related]  

  • 37. N-terminal acetylome analysis reveals the specificity of Naa50 (Nat5) and suggests a kinetic competition between N-terminal acetyltransferases and methionine aminopeptidases.
    Van Damme P; Hole K; Gevaert K; Arnesen T
    Proteomics; 2015 Jul; 15(14):2436-46. PubMed ID: 25886145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nuclear import of the histone acetyltransferase complex SAS-I in Saccharomyces cerevisiae.
    Schaper S; Franke J; Meijsing SH; Ehrenhofer-Murray AE
    J Cell Sci; 2005 Apr; 118(Pt 7):1473-84. PubMed ID: 15788653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Composition and function of the eukaryotic N-terminal acetyltransferase subunits.
    Polevoda B; Sherman F
    Biochem Biophys Res Commun; 2003 Aug; 308(1):1-11. PubMed ID: 12890471
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Elongator is a histone H3 and H4 acetyltransferase important for normal histone acetylation levels in vivo.
    Winkler GS; Kristjuhan A; Erdjument-Bromage H; Tempst P; Svejstrup JQ
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3517-22. PubMed ID: 11904415
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.