These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16467850)

  • 1. Vacuolar sequential exocytosis of large dense-core vesicles in adrenal medulla.
    Kishimoto T; Kimura R; Liu TT; Nemoto T; Takahashi N; Kasai H
    EMBO J; 2006 Feb; 25(4):673-82. PubMed ID: 16467850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of cysteine string protein (Csp) and mutant alpha-SNAP overexpression reveals a role for csp in late steps of membrane fusion in dense-core granule exocytosis in adrenal chromaffin cells.
    Graham ME; Burgoyne RD
    J Neurosci; 2000 Feb; 20(4):1281-9. PubMed ID: 10662817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential exocytosis of insulin granules is associated with redistribution of SNAP25.
    Takahashi N; Hatakeyama H; Okado H; Miwa A; Kishimoto T; Kojima T; Abe T; Kasai H
    J Cell Biol; 2004 Apr; 165(2):255-62. PubMed ID: 15117968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential compound exocytosis of large dense-core vesicles in PC12 cells studied with TEPIQ (two-photon extracellular polar-tracer imaging-based quantification) analysis.
    Kishimoto T; Liu TT; Hatakeyama H; Nemoto T; Takahashi N; Kasai H
    J Physiol; 2005 Nov; 568(Pt 3):905-15. PubMed ID: 16150797
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tight coupling of the t-SNARE and calcium channel microdomains in adrenomedullary slices and not in cultured chromaffin cells.
    Lopez I; Giner D; Ruiz-Nuño A; Fuentealba J; Viniegra S; Garcia AG; Davletov B; Gutiérrez LM
    Cell Calcium; 2007 Jun; 41(6):547-58. PubMed ID: 17112584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of Snapin in neurosecretion: snapin knock-out mice exhibit impaired calcium-dependent exocytosis of large dense-core vesicles in chromaffin cells.
    Tian JH; Wu ZX; Unzicker M; Lu L; Cai Q; Li C; Schirra C; Matti U; Stevens D; Deng C; Rettig J; Sheng ZH
    J Neurosci; 2005 Nov; 25(45):10546-55. PubMed ID: 16280592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner.
    Yizhar O; Matti U; Melamed R; Hagalili Y; Bruns D; Rettig J; Ashery U
    Proc Natl Acad Sci U S A; 2004 Feb; 101(8):2578-83. PubMed ID: 14983051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca(2+)-dependent activator protein for secretion is critical for the fusion of dense-core vesicles with the membrane in calf adrenal chromaffin cells.
    Elhamdani A; Martin TF; Kowalchyk JA; Artalejo CR
    J Neurosci; 1999 Sep; 19(17):7375-83. PubMed ID: 10460244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological aspects of exocytosis in chromaffin cells of the adrenal medulla.
    Aunis D; Langley K
    Acta Physiol Scand; 1999 Oct; 167(2):89-97. PubMed ID: 10571543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Punctate appearance of dopamine-beta-hydroxylase on the chromaffin cell surface reflects the fusion of individual chromaffin granules upon exocytosis.
    Wick PF; Trenkle JM; Holz RW
    Neuroscience; 1997 Oct; 80(3):847-60. PubMed ID: 9276499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exocytosis in chromaffin cells of the adrenal medulla.
    Aunis D
    Int Rev Cytol; 1998; 181():213-320. PubMed ID: 9522458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intravesicular calcium release mediates the motion and exocytosis of secretory organelles: a study with adrenal chromaffin cells.
    Camacho M; Machado JD; Alvarez J; Borges R
    J Biol Chem; 2008 Aug; 283(33):22383-9. PubMed ID: 18562320
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of the Secretory Machinery Dynamics by Total Internal Reflection Fluorescence Microscopy in Bovine Adrenal Chromaffin Cells.
    Villanueva J; Gimenez-Molina Y; Gutiérrez LM
    Methods Mol Biol; 2019; 1860():379-389. PubMed ID: 30317519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of fusion pore dynamics during exocytosis by Munc18.
    Fisher RJ; Pevsner J; Burgoyne RD
    Science; 2001 Feb; 291(5505):875-8. PubMed ID: 11157167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sphingomyelin derivatives increase the frequency of microvesicle and granule fusion in chromaffin cells.
    García-Martínez V; Montes MA; Villanueva J; Gimenez-Molina Y; de Toledo GA; Gutiérrez LM
    Neuroscience; 2015 Jun; 295():117-25. PubMed ID: 25813703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exocytosis in neuroendocrine cells: new tasks for actin.
    Malacombe M; Bader MF; Gasman S
    Biochim Biophys Acta; 2006 Nov; 1763(11):1175-83. PubMed ID: 17034880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A rapid exocytosis mode in chromaffin cells with a neuronal phenotype.
    Ardiles AO; Maripillán J; Lagos VL; Toro R; Mora IG; Villarroel L; Alés E; Borges R; Cárdenas AM
    J Neurochem; 2006 Oct; 99(1):29-41. PubMed ID: 16889641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosine phosphorylation regulates rapid endocytosis in adrenal chromaffin cells.
    Nucifora PG; Fox AP
    J Neurosci; 1999 Nov; 19(22):9739-46. PubMed ID: 10559383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium gradients and exocytosis in bovine adrenal chromaffin cells.
    Marengo FD
    Cell Calcium; 2005 Aug; 38(2):87-99. PubMed ID: 16076487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SNARE conformational changes that prepare vesicles for exocytosis.
    Takahashi N; Hatakeyama H; Okado H; Noguchi J; Ohno M; Kasai H
    Cell Metab; 2010 Jul; 12(1):19-29. PubMed ID: 20620992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.