These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16467911)

  • 1. Modeling the maximum charge state of arginine-containing Peptide ions formed by electrospray ionization.
    Schnier PD; Price WD; Williams ER
    J Am Soc Mass Spectrom; 1996 Sep; 7(9):972-6. PubMed ID: 16467911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the maximum charge state and proton transfer reactivity of peptide and protein ions formed by electrospray ionization.
    Schnier PD; Gross DS; Williams ER
    J Am Soc Mass Spectrom; 1995 Nov; 6(11):1086-97. PubMed ID: 24214055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proton transfer reactivity of large multiply charged ions.
    Williams ER
    J Mass Spectrom; 1996 Aug; 31(8):831-42. PubMed ID: 8799309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substituent effects on the gas-phase fragmentation reactions of sulfonium ion containing peptides.
    Sierakowski J; Amunugama M; Roberts KD; Reid GE
    Rapid Commun Mass Spectrom; 2007; 21(7):1230-8. PubMed ID: 17330214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective gas-phase cleavage at the peptide bond C-terminal to aspartic acid in fixed-charge derivatives of Asp-containing peptides.
    Gu C; Tsaprailis G; Breci L; Wysocki VH
    Anal Chem; 2000 Dec; 72(23):5804-13. PubMed ID: 11128940
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of solvent on the maximum charge state and charge state distribution of protein ions produced by electrospray ionization.
    Iavarone AT; Jurchen JC; Williams ER
    J Am Soc Mass Spectrom; 2000 Nov; 11(11):976-85. PubMed ID: 11073261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gas-phase reactivity and molecular modeling studies on triply protonated dodecapeptides that contain four basic residues.
    Cassady CJ
    J Am Soc Mass Spectrom; 1998 Jul; 9(7):716-23. PubMed ID: 9879381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Charging of Proteins in Native Mass Spectrometry.
    Susa AC; Xia Z; Tang HYH; Tainer JA; Williams ER
    J Am Soc Mass Spectrom; 2017 Feb; 28(2):332-340. PubMed ID: 27734326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms for the proton mobility-dependent gas-phase fragmentation reactions of S-alkyl cysteine sulfoxide-containing peptide ions.
    Froelich JM; Reid GE
    J Am Soc Mass Spectrom; 2007 Sep; 18(9):1690-705. PubMed ID: 17689096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion/ion chemistry of high-mass multiply charged ions.
    McLuckey SA; Stephenson JL
    Mass Spectrom Rev; 1998; 17(6):369-407. PubMed ID: 10360331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas-phase ion/ion reactions of multiply protonated polypeptides with metal containing anions.
    Newton KA; Amunugama R; McLuckey SA
    J Phys Chem A; 2005 Apr; 109(16):3608-16. PubMed ID: 16568152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential hydration of small protonated peptides.
    Liu D; Wyttenbach T; Barran PE; Bowers MT
    J Am Chem Soc; 2003 Jul; 125(28):8458-64. PubMed ID: 12848551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reactivity and gas-phase acidity determinations of small peptide ions consisting of 11 to 14 amino acid residues.
    Carr SR; Cassady CJ
    J Mass Spectrom; 1997 Sep; 32(9):959-67. PubMed ID: 9311149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation and manipulation of sodium cationized peptides in the gas phase.
    Newton KA; McLuckey SA
    J Am Soc Mass Spectrom; 2004 Apr; 15(4):607-15. PubMed ID: 15047065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two ion/ion charge inversion steps to form a doubly protonated peptide from a singly protonated peptide in the gas phase.
    He M; McLuckey SA
    J Am Chem Soc; 2003 Jul; 125(26):7756-7. PubMed ID: 12822966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the efficiency for ion transfer through bent capillaries.
    Chen TC; Xu W; Garimella S; Ouyang Z
    J Mass Spectrom; 2012 Nov; 47(11):1466-72. PubMed ID: 23147823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-to-charge dispersion of collision-induced dissociation product ions for enhancement of structural information and product ion identification.
    Zinnel NF; Russell DH
    Anal Chem; 2014 May; 86(10):4791-8. PubMed ID: 24754452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas-phase proton transfer reactions involving multiply charged cytochrome c ions and water under thermal conditions.
    Winger BE; Light-Wahl KJ; Smith RD
    J Am Soc Mass Spectrom; 1992 Sep; 3(6):624-30. PubMed ID: 24234566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apparent gas-phase acidities of multiply protonated peptide ions: Ubiquitin, insulin B, and renin substrate.
    Zhang X; Cassady CJ
    J Am Soc Mass Spectrom; 1996 Dec; 7(12):1211-8. PubMed ID: 24203153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On performing simultaneous electron transfer dissociation and collision-induced dissociation on multiply protonated peptides in a linear ion trap.
    Campbell JL; Hager JW; Le Blanc JC
    J Am Soc Mass Spectrom; 2009 Sep; 20(9):1672-83. PubMed ID: 19539496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.