These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 16467913)

  • 1. Nanomedicine and protein misfolding diseases.
    Kransnoslobodtsev AV; Shlyakhtenko LS; Ukraintsev E; Zaikova TO; Keana JF; Lyubchenko YL
    Nanomedicine; 2005 Dec; 1(4):300-5. PubMed ID: 16467913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein interactions and misfolding analyzed by AFM force spectroscopy.
    McAllister C; Karymov MA; Kawano Y; Lushnikov AY; Mikheikin A; Uversky VN; Lyubchenko YL
    J Mol Biol; 2005 Dec; 354(5):1028-42. PubMed ID: 16290901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.
    Chong SH; Ham S
    Acc Chem Res; 2015 Apr; 48(4):956-65. PubMed ID: 25844814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoimaging for protein misfolding diseases.
    Lyubchenko YL; Kim BH; Krasnoslobodtsev AV; Yu J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(5):526-43. PubMed ID: 20665728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoimaging in protein-misfolding and -conformational diseases.
    Uversky VN
    Nanomedicine (Lond); 2007 Oct; 2(5):615-43. PubMed ID: 17976024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. alpha-Synuclein misfolding: single molecule AFM force spectroscopy study.
    Yu J; Malkova S; Lyubchenko YL
    J Mol Biol; 2008 Dec; 384(4):992-1001. PubMed ID: 18948117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanotools for megaproblems: probing protein misfolding diseases using nanomedicine modus operandi.
    Uversky VN; Kabanov AV; Lyubchenko YL
    J Proteome Res; 2006 Oct; 5(10):2505-22. PubMed ID: 17022621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-molecule atomic force microscopy force spectroscopy study of Aβ-40 interactions.
    Kim BH; Palermo NY; Lovas S; Zaikova T; Keana JF; Lyubchenko YL
    Biochemistry; 2011 Jun; 50(23):5154-62. PubMed ID: 21553928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of misfolded amyloidogenic dimers: computational analysis of force spectroscopy data.
    Zhang Y; Lyubchenko YL
    Biophys J; 2014 Dec; 107(12):2903-2910. PubMed ID: 25517155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers.
    Wang Q; Shah N; Zhao J; Wang C; Zhao C; Liu L; Li L; Zhou F; Zheng J
    Phys Chem Chem Phys; 2011 Sep; 13(33):15200-10. PubMed ID: 21769359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AFM-Based Single Molecule Techniques: Unraveling the Amyloid Pathogenic Species.
    Ruggeri FS; Habchi J; Cerreta A; Dietler G
    Curr Pharm Des; 2016; 22(26):3950-70. PubMed ID: 27189600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A bacteriophage capsid protein provides a general amyloid interaction motif (GAIM) that binds and remodels misfolded protein assemblies.
    Krishnan R; Tsubery H; Proschitsky MY; Asp E; Lulu M; Gilead S; Gartner M; Waltho JP; Davis PJ; Hounslow AM; Kirschner DA; Inouye H; Myszka DG; Wright J; Solomon B; Fisher RA
    J Mol Biol; 2014 Jun; 426(13):2500-19. PubMed ID: 24768993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, orientation, and surface interaction of Alzheimer amyloid-β peptides on the graphite.
    Yu X; Wang Q; Lin Y; Zhao J; Zhao C; Zheng J
    Langmuir; 2012 Apr; 28(16):6595-605. PubMed ID: 22468636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of the β-sheet content on the mechanical properties of aggregates during amyloid fibrillization.
    Ruggeri FS; Adamcik J; Jeong JS; Lashuel HA; Mezzenga R; Dietler G
    Angew Chem Int Ed Engl; 2015 Feb; 54(8):2462-6. PubMed ID: 25588987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical studies of the amyloid β-peptide: interactions with metal ions and small molecules.
    Wärmländer S; Tiiman A; Abelein A; Luo J; Jarvet J; Söderberg KL; Danielsson J; Gräslund A
    Chembiochem; 2013 Sep; 14(14):1692-704. PubMed ID: 23983094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing synthetic amyloid-β aggregation inhibitor using single molecule atomic force spectroscopy.
    Hane FT; Lee BY; Petoyan A; Rauk A; Leonenko Z
    Biosens Bioelectron; 2014 Apr; 54():492-8. PubMed ID: 24321883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of the growth, evolution, and self-aggregation of β-amyloid fibrils using tapping-mode atomic force microscopy.
    Serem WK; Bett CK; Ngunjiri JN; Garno JC
    Microsc Res Tech; 2011 Jul; 74(7):699-708. PubMed ID: 21698718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of amyloid beta dimer formation.
    Urbanc B; Cruz L; Ding F; Sammond D; Khare S; Buldyrev SV; Stanley HE; Dokholyan NV
    Biophys J; 2004 Oct; 87(4):2310-21. PubMed ID: 15454432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A plant cell-based system that predicts aβ42 misfolding: potential as a drug discovery tool for Alzheimer's disease.
    Zhao T; Zeng Y; Kermode AR
    Mol Genet Metab; 2012 Nov; 107(3):571-9. PubMed ID: 22944366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining molecular dynamics simulations and experimental analyses in protein misfolding.
    Wille H; Dorosh L; Amidian S; Schmitt-Ulms G; Stepanova M
    Adv Protein Chem Struct Biol; 2019; 118():33-110. PubMed ID: 31928730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.