These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 16468042)

  • 21. Regulation of the osmoregulatory HOG MAPK cascade in yeast.
    Saito H; Tatebayashi K
    J Biochem; 2004 Sep; 136(3):267-72. PubMed ID: 15598881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The yeast MAPK Hog1 is not essential for immediate survival under osmostress.
    Maayan I; Engelberg D
    FEBS Lett; 2009 Jun; 583(12):2015-20. PubMed ID: 19447106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Signal integration in budding yeast.
    Waltermann C; Klipp E
    Biochem Soc Trans; 2010 Oct; 38(5):1257-64. PubMed ID: 20863295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconstruction of the High-Osmolarity Glycerol (HOG) Signaling Pathway from the Halophilic Fungus Wallemia ichthyophaga in Saccharomyces cerevisiae.
    Konte T; Terpitz U; Plemenitaš A
    Front Microbiol; 2016; 7():901. PubMed ID: 27379041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cdc37p is involved in osmoadaptation and controls high osmolarity-induced cross-talk via the MAP kinase Kss1p.
    Yang XX; Hawle P; Bebelman JP; Meenhuis A; Siderius M; van der Vies SM
    FEMS Yeast Res; 2007 Sep; 7(6):796-807. PubMed ID: 17451450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative genomics of MAP kinase and calcium-calcineurin signalling components in plant and human pathogenic fungi.
    Rispail N; Soanes DM; Ant C; Czajkowski R; Grünler A; Huguet R; Perez-Nadales E; Poli A; Sartorel E; Valiante V; Yang M; Beffa R; Brakhage AA; Gow NA; Kahmann R; Lebrun MH; Lenasi H; Perez-Martin J; Talbot NJ; Wendland J; Di Pietro A
    Fungal Genet Biol; 2009 Apr; 46(4):287-98. PubMed ID: 19570501
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The pheromone response module, a mitogen-activated protein kinase pathway implicated in the regulation of fungal development, secondary metabolism and pathogenicity.
    Frawley D; Bayram Ö
    Fungal Genet Biol; 2020 Nov; 144():103469. PubMed ID: 32950720
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence that the MAPK-docking site in MAPKK Dpbs2p is essential for its function.
    Sharma P; Mondal AK
    Biochem Biophys Res Commun; 2006 Jul; 346(2):562-6. PubMed ID: 16765917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Requirement for the polarisome and formin function in Ssk2p-mediated actin recovery from osmotic stress in Saccharomyces cerevisiae.
    Bettinger BT; Clark MG; Amberg DC
    Genetics; 2007 Apr; 175(4):1637-48. PubMed ID: 17237521
    [TBL] [Abstract][Full Text] [Related]  

  • 30. When the stress of your environment makes you go HOG wild.
    Westfall PJ; Ballon DR; Thorner J
    Science; 2004 Nov; 306(5701):1511-2. PubMed ID: 15567851
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evidence that C-terminal non-kinase domain of Pbs2p has a role in high osmolarity-induced nuclear localization of Hog1p.
    Sharma P; Mondal AK
    Biochem Biophys Res Commun; 2005 Mar; 328(4):906-13. PubMed ID: 15707964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway.
    Raitt DC; Posas F; Saito H
    EMBO J; 2000 Sep; 19(17):4623-31. PubMed ID: 10970855
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative genomics of fungal allergens and epitopes shows widespread distribution of closely related allergen and epitope orthologues.
    Bowyer P; Fraczek M; Denning DW
    BMC Genomics; 2006 Oct; 7():251. PubMed ID: 17029625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Docking sites on mitogen-activated protein kinase (MAPK) kinases, MAPK phosphatases and the Elk-1 transcription factor compete for MAPK binding and are crucial for enzymic activity.
    Bardwell AJ; Abdollahi M; Bardwell L
    Biochem J; 2003 Mar; 370(Pt 3):1077-85. PubMed ID: 12529172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Comprehensive Membrane Interactome Mapping of Sho1p Reveals Fps1p as a Novel Key Player in the Regulation of the HOG Pathway in S. cerevisiae.
    Lam MH; Snider J; Rehal M; Wong V; Aboualizadeh F; Drecun L; Wong O; Jubran B; Li M; Ali M; Jessulat M; Deineko V; Miller R; Lee Me; Park HO; Davidson A; Babu M; Stagljar I
    J Mol Biol; 2015 Jun; 427(11):2088-103. PubMed ID: 25644660
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anti-cancer drug KP1019 induces Hog1 phosphorylation and protein ubiquitylation in Saccharomyces cerevisiae.
    Singh V; Azad GK; Reddy M A; Baranwal S; Tomar RS
    Eur J Pharmacol; 2014 Aug; 736():77-85. PubMed ID: 24797784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parallel feedback loops control the basal activity of the HOG MAPK signaling cascade.
    Sharifian H; Lampert F; Stojanovski K; Regot S; Vaga S; Buser R; Lee SS; Koeppl H; Posas F; Pelet S; Peter M
    Integr Biol (Camb); 2015 Apr; 7(4):412-22. PubMed ID: 25734609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The evolutionary rate variation among genes of HOG-signaling pathway in yeast genomes.
    Wu X; Chi X; Wang P; Zheng D; Ding R; Li Y
    Biol Direct; 2010 Jul; 5():46. PubMed ID: 20618989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A model-based study delineating the roles of the two signaling branches of Saccharomyces cerevisiae, Sho1 and Sln1, during adaptation to osmotic stress.
    Parmar JH; Bhartiya S; Venkatesh KV
    Phys Biol; 2009 Aug; 6(3):036019. PubMed ID: 19657148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evolution of osmosensing signal transduction in Metazoa: stress-activated protein kinases p38 and JNK.
    Böhm M; Gamulin V; Schröder HC; Müller WE
    Cell Tissue Res; 2002 Jun; 308(3):431-8. PubMed ID: 12107436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.