These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 1646812)
1. Importance of the positive charge cluster in Escherichia coli ribonuclease HI for the effective binding of the substrate. Kanaya S; Katsuda-Nakai C; Ikehara M J Biol Chem; 1991 Jun; 266(18):11621-7. PubMed ID: 1646812 [TBL] [Abstract][Full Text] [Related]
2. Investigating the role of conserved residue Asp134 in Escherichia coli ribonuclease HI by site-directed random mutagenesis. Haruki M; Noguchi E; Nakai C; Liu YY; Oobatake M; Itaya M; Kanaya S Eur J Biochem; 1994 Mar; 220(2):623-31. PubMed ID: 8125123 [TBL] [Abstract][Full Text] [Related]
3. Identification of the amino acid residues involved in an active site of Escherichia coli ribonuclease H by site-directed mutagenesis. Kanaya S; Kohara A; Miura Y; Sekiguchi A; Iwai S; Inoue H; Ohtsuka E; Ikehara M J Biol Chem; 1990 Mar; 265(8):4615-21. PubMed ID: 1689729 [TBL] [Abstract][Full Text] [Related]
4. Mutations within the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase abolish virus infectivity. Tisdale M; Schulze T; Larder BA; Moelling K J Gen Virol; 1991 Jan; 72 ( Pt 1)():59-66. PubMed ID: 1703563 [TBL] [Abstract][Full Text] [Related]
5. Effect of mutagenesis at each of five histidine residues on enzymatic activity and stability of ribonuclease H from Escherichia coli. Kanaya S; Katayanagi K; Morikawa K; Inoue H; Ohtsuka E; Ikehara M Eur J Biochem; 1991 Jun; 198(2):437-40. PubMed ID: 1645658 [TBL] [Abstract][Full Text] [Related]
6. Conformational stabilities of Escherichia coli RNase HI variants with a series of amino acid substitutions at a cavity within the hydrophobic core. Akasako A; Haruki M; Oobatake M; Kanaya S J Biol Chem; 1997 Jul; 272(30):18686-93. PubMed ID: 9228039 [TBL] [Abstract][Full Text] [Related]
7. Stabilization of Escherichia coli ribonuclease HI by strategic replacement of amino acid residues with those from the thermophilic counterpart. Kimura S; Nakamura H; Hashimoto T; Oobatake M; Kanaya S J Biol Chem; 1992 Oct; 267(30):21535-42. PubMed ID: 1328237 [TBL] [Abstract][Full Text] [Related]
8. High resistance of Escherichia coli ribonuclease HI variant with quintuple thermostabilizing mutations to thermal denaturation, acid denaturation, and proteolytic degradation. Akasako A; Haruki M; Oobatake M; Kanaya S Biochemistry; 1995 Jun; 34(25):8115-22. PubMed ID: 7794925 [TBL] [Abstract][Full Text] [Related]
9. The N-terminal hybrid binding domain of RNase HI from Thermotoga maritima is important for substrate binding and Mg2+-dependent activity. Jongruja N; You DJ; Kanaya E; Koga Y; Takano K; Kanaya S FEBS J; 2010 Nov; 277(21):4474-89. PubMed ID: 20875084 [TBL] [Abstract][Full Text] [Related]
10. Structural, thermodynamic, and mutational analyses of a psychrotrophic RNase HI. Tadokoro T; You DJ; Abe Y; Chon H; Matsumura H; Koga Y; Takano K; Kanaya S Biochemistry; 2007 Jun; 46(25):7460-8. PubMed ID: 17536836 [TBL] [Abstract][Full Text] [Related]
11. Expression, purification, and characterization of a recombinant ribonuclease H from Thermus thermophilus HB8. Kanaya S; Itaya M J Biol Chem; 1992 May; 267(14):10184-92. PubMed ID: 1315754 [TBL] [Abstract][Full Text] [Related]
12. Construction of an enzymatically active ribonuclease H domain of human immunodeficiency virus type 1 reverse transcriptase. Stahl SJ; Kaufman JD; Vikić-Topić S; Crouch RJ; Wingfield PT Protein Eng; 1994 Sep; 7(9):1103-8. PubMed ID: 7530360 [TBL] [Abstract][Full Text] [Related]
13. Heat labile ribonuclease HI from a psychrotrophic bacterium: gene cloning, characterization and site-directed mutagenesis. Ohtani N; Haruki M; Morikawa M; Kanaya S Protein Eng; 2001 Dec; 14(12):975-82. PubMed ID: 11809928 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of action of Escherichia coli ribonuclease III. Stringent chemical requirement for the glutamic acid 117 side chain and Mn2+ rescue of the Glu117Asp mutant. Sun W; Nicholson AW Biochemistry; 2001 Apr; 40(16):5102-10. PubMed ID: 11305928 [TBL] [Abstract][Full Text] [Related]
15. A large deletion in the connection subdomain of murine leukemia virus reverse transcriptase or replacement of the RNase H domain with Escherichia coli RNase H results in altered polymerase and RNase H activities. Post K; Guo J; Kalman E; Uchida T; Crouch RJ; Levin JG Biochemistry; 1993 Jun; 32(21):5508-17. PubMed ID: 7684924 [TBL] [Abstract][Full Text] [Related]
16. Site-directed mutagenesis of Moloney murine leukemia virus reverse transcriptase. Demonstration of lysine 103 in the nucleotide binding site. Basu A; Basu S; Modak MJ J Biol Chem; 1990 Oct; 265(28):17162-6. PubMed ID: 1698772 [TBL] [Abstract][Full Text] [Related]
17. Mutational analysis of the DNA polymerase and ribonuclease H activities of human immunodeficiency virus type 2 reverse transcriptase expressed in Escherichia coli. Hizi A; Tal R; Hughes SH Virology; 1991 Jan; 180(1):339-46. PubMed ID: 1701948 [TBL] [Abstract][Full Text] [Related]
18. Role of histidine 124 in the catalytic function of ribonuclease HI from Escherichia coli. Oda Y; Yoshida M; Kanaya S J Biol Chem; 1993 Jan; 268(1):88-92. PubMed ID: 8380173 [TBL] [Abstract][Full Text] [Related]
19. Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe. Biswas R; Ledman DW; Fox RO; Altman S; Gopalan V J Mol Biol; 2000 Feb; 296(1):19-31. PubMed ID: 10656815 [TBL] [Abstract][Full Text] [Related]
20. Residues 36-42 of liver RNase PL3 contribute to its uridine-preferring substrate specificity. Cloning of the cDNA and site-directed mutagenesis studies. Vicentini AM; Hemmings BA; Hofsteenge J Protein Sci; 1994 Mar; 3(3):459-66. PubMed ID: 8019417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]