These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 1646812)

  • 21. Characterization of the putative GTP-binding site residues of Escherichia coli adenylosuccinate synthetase by site-directed mutagenesis.
    Kang C; Fromm HJ
    Arch Biochem Biophys; 1994 May; 310(2):475-80. PubMed ID: 8179335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular cloning of a ribonuclease H (RNase HI) gene from an extreme thermophile Thermus thermophilus HB8: a thermostable RNase H can functionally replace the Escherichia coli enzyme in vivo.
    Itaya M; Kondo K
    Nucleic Acids Res; 1991 Aug; 19(16):4443-9. PubMed ID: 1653414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Investigating the structure of human RNase H1 by site-directed mutagenesis.
    Wu H; Lima WF; Crooke ST
    J Biol Chem; 2001 Jun; 276(26):23547-53. PubMed ID: 11319219
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel strategy for stabilization of Escherichia coli ribonuclease HI involving a screen for an intragenic suppressor of carboxyl-terminal deletions.
    Haruki M; Noguchi E; Akasako A; Oobatake M; Itaya M; Kanaya S
    J Biol Chem; 1994 Oct; 269(43):26904-11. PubMed ID: 7929430
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mutations of a conserved residue within HIV-1 ribonuclease H affect its exo- and endonuclease activities.
    Wöhrl BM; Volkmann S; Moelling K
    J Mol Biol; 1991 Aug; 220(3):801-18. PubMed ID: 1714505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stabilization of E. coli Ribonuclease HI by the 'stability profile of mutant protein' (SPMP)-inspired random and non-random mutagenesis.
    Haruki M; Saito Y; Ota M; Nishikawa K; Kanaya S
    J Biotechnol; 2006 Jul; 124(3):512-22. PubMed ID: 16545882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities.
    Blain SW; Goff SP
    J Biol Chem; 1993 Nov; 268(31):23585-92. PubMed ID: 7693692
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increase in nucleolytic activity of ribonuclease T1 by substitution of tryptophan 45 for tyrosine 45.
    Nishikawa S; Morioka H; Kimura T; Ueda Y; Tanaka T; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M
    Eur J Biochem; 1988 Apr; 173(2):389-94. PubMed ID: 3129293
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of the enzymatic activity of ribonuclease HI from Thermus thermophilus HB8 with a suppressor mutation method.
    Hirano N; Haruki M; Morikawa M; Kanaya S
    Biochemistry; 2000 Oct; 39(43):13285-94. PubMed ID: 11052682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reconstitution in vitro of RNase H activity by using purified N-terminal and C-terminal domains of human immunodeficiency virus type 1 reverse transcriptase.
    Hostomsky Z; Hostomska Z; Hudson GO; Moomaw EW; Nodes BR
    Proc Natl Acad Sci U S A; 1991 Feb; 88(4):1148-52. PubMed ID: 1705027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Low levels of RNase H activity in Escherichia coli FB2 rnh result from a single-base change in the structural gene of RNase H.
    Kanaya S; Crouch RJ
    J Bacteriol; 1983 May; 154(2):1021-6. PubMed ID: 6302075
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of cysteine mutations on the catalytic activities of the reverse transcriptase of human immunodeficiency virus type-1.
    Loya S; Tal R; Hughes SH; Hizi A
    J Biol Chem; 1992 Jul; 267(20):13879-83. PubMed ID: 1378433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase.
    Ostanin K; Harms EH; Stevis PE; Kuciel R; Zhou MM; Van Etten RL
    J Biol Chem; 1992 Nov; 267(32):22830-6. PubMed ID: 1429631
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression in Escherichia coli of UDP-glucose pyrophosphorylase cDNA from potato tuber and functional assessment of the five lysyl residues located at the substrate-binding site.
    Katsube T; Kazuta Y; Tanizawa K; Fukui T
    Biochemistry; 1991 Sep; 30(35):8546-51. PubMed ID: 1909568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of aspartic acid 121 in human pancreatic ribonuclease catalysis.
    Gaur D; Batra JK
    Mol Cell Biochem; 2005 Jul; 275(1-2):95-101. PubMed ID: 16335788
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Remarkable stabilization of a psychrotrophic RNase HI by a combination of thermostabilizing mutations identified by the suppressor mutation method.
    Tadokoro T; Matsushita K; Abe Y; Rohman MS; Koga Y; Takano K; Kanaya S
    Biochemistry; 2008 Aug; 47(31):8040-7. PubMed ID: 18616283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of cavity-modulating mutations on the stability of Escherichia coli ribonuclease HI.
    Kimura S; Oda Y; Nakai T; Katayanagi K; Kitakuni E; Nakai C; Nakamura H; Ikehara M; Kanaya S
    Eur J Biochem; 1992 Jun; 206(2):337-43. PubMed ID: 1317795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metal binding and activation of the ribonuclease H domain from moloney murine leukemia virus.
    Goedken ER; Marqusee S
    Protein Eng; 1999 Nov; 12(11):975-80. PubMed ID: 10585503
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The isolated RNase H domain of murine leukemia virus reverse transcriptase. Retention of activity with concomitant loss of specificity.
    Zhan X; Crouch RJ
    J Biol Chem; 1997 Aug; 272(35):22023-9. PubMed ID: 9268341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNA sequence of the gene coding for Escherichia coli ribonuclease H.
    Kanaya S; Crouch RJ
    J Biol Chem; 1983 Jan; 258(2):1276-81. PubMed ID: 6296074
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.