These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1646830)

  • 1. Non-ideal behaviour of silica-based stationary phases in trifluoroacetic acid-acetonitrile-based reversed-phase high-performance liquid chromatographic separations of insulins and proinsulins.
    Linde S; Welinder BS
    J Chromatogr; 1991 Jan; 536(1-2):43-55. PubMed ID: 1646830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silica versus polymer-based stationary phases for reversed-phase high-performance liquid chromatographic analyses of rat insulin biosynthesis. A comparison of resolution and recovery.
    Linde S; Welinder BS
    J Chromatogr; 1991 Jul; 548(1-2):195-206. PubMed ID: 1939422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative mobile phases for the reversed-phase high-performance liquid chromatography of peptides and proteins.
    Welinder BS; Sørensen HH
    J Chromatogr; 1991 Jan; 537(1-2):181-99. PubMed ID: 2050779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of polymeric reversed-phase columns for the characterization of polypeptides extracted from human pancreata. II. Effect of the stationary phase.
    Welinder BS
    J Chromatogr; 1991 Mar; 542(1):83-99. PubMed ID: 1874841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds?
    McCalley DV
    J Chromatogr A; 2007 Nov; 1171(1-2):46-55. PubMed ID: 17931636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography.
    McCalley DV
    J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a novel amide-silica stationary phase for the reversed-phase HPLC separation of different classes of phytohormones.
    Aral H; Aral T; Ziyadanoğulları B; Ziyadanoğulları R
    Talanta; 2013 Nov; 116():155-63. PubMed ID: 24148387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative hypersecretion of proinsulin in rat model of NIDDM.
    Leahy JL; Halban PA; Weir GC
    Diabetes; 1991 Aug; 40(8):985-9. PubMed ID: 1860563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of polymeric reversed-phase columns for the characterization of polypeptides extracted from human pancreata. I. Effect of the mobile phase.
    Welinder BS; Linde S
    J Chromatogr; 1991 Mar; 542(1):65-81. PubMed ID: 1874840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential rates of conversion of rat proinsulins I and II. Evidence for slow cleavage at the B-chain/C-peptide junction of proinsulin II.
    Sizonenko SV; Halban PA
    Biochem J; 1991 Sep; 278 ( Pt 3)(Pt 3):621-5. PubMed ID: 1898351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of rat insulin II, but not I, leads to anomalous elution profiles upon HPLC analysis of insulin-related peptides.
    Gross D; Skvorak A; Hendrick G; Weir G; Villa-Komaroff L; Halban P
    FEBS Lett; 1988 Dec; 241(1-2):205-8. PubMed ID: 3058512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of reversed-phase liquid chromatographic methods for the separation of new quinolones.
    Kim BH; Choi NH; Ok JH
    J Chromatogr Sci; 2002 Aug; 40(7):369-76. PubMed ID: 12201477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of insulin variants in patients with hyperinsulinemia by reversed-phase, high-performance liquid chromatography.
    Seino S; Funakoshi A; Fu ZZ; Vinik A
    Diabetes; 1985 Jan; 34(1):1-7. PubMed ID: 3880547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin biosynthesis in the rat: demonstration of two proinsulins.
    Clark JL; Steiner DF
    Proc Natl Acad Sci U S A; 1969 Jan; 62(1):278-85. PubMed ID: 4890253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of proinsulin and its conversion products by reversed-phase high-performance liquid chromatography.
    Linde S; Welinder BS; Nielsen JH
    J Chromatogr; 1993 May; 614(2):185-204. PubMed ID: 8314931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic study on the high-selectivity enantioseparation of amino acids using a chiral crown ether-bonded stationary phase and acidic, highly organic mobile phase by liquid chromatography/time-of-flight mass spectrometry.
    Konya Y; Taniguchi M; Furuno M; Nakano Y; Tanaka N; Fukusaki E
    J Chromatogr A; 2018 Nov; 1578():35-44. PubMed ID: 30340763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications.
    Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R
    Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of porcine proinsulin by high-performance liquid chromatography.
    Parman AU; Rideout JM
    J Chromatogr; 1983 Feb; 256(2):283-91. PubMed ID: 6339531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of stationary phase gradients on C8 liquid chromatography columns.
    Cecil T; Bautista J; Collinson MM; Rutan SC
    J Chromatogr A; 2024 Jul; 1727():464974. PubMed ID: 38761702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of ionic liquid additives to mobile phase on separation and system efficiency for HPLC of selected alkaloids on different stationary phases.
    Petruczynik A
    J Chromatogr Sci; 2012 Apr; 50(4):287-93. PubMed ID: 22368114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.