BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16468778)

  • 1. An improved aldehyde linker for the solid phase synthesis of hindered amides.
    Liley MJ; Johnson T; Gibson SE
    J Org Chem; 2006 Feb; 71(4):1322-9. PubMed ID: 16468778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiophene backbone amide linkers, a new class of easily prepared and highly acid-labile linkers for solid-phase synthesis.
    Jessing M; Brandt M; Jensen KJ; Christensen JB; Boas U
    J Org Chem; 2006 Sep; 71(18):6734-41. PubMed ID: 16930022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid-phase synthesis of lidocaine and procainamide analogues using backbone amide linker (BAL) anchoring.
    Shannon SK; Peacock MJ; Kates SA; Barany G
    J Comb Chem; 2003; 5(6):860-8. PubMed ID: 14606816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the peri-effect in synthesis and reactivity of highly substituted naphthaldehydes: a novel backbone amide linker for solid-phase synthesis.
    Pittelkow M; Boas U; Jessing M; Jensen KJ; Christensen JB
    Org Biomol Chem; 2005 Feb; 3(3):508-14. PubMed ID: 15678190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the chemical stability and synthetic utility of an oxazolidine linker for solid-phase chemistry.
    Wills AJ; Cano M; Balasubramanian S
    J Org Chem; 2004 Aug; 69(16):5439-47. PubMed ID: 15287794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two dialkoxynaphthalene aldehydes as backbone amide linkers for solid-phase synthesis.
    Boas U; Christensen JB; Jensen KJ
    J Comb Chem; 2004; 6(4):497-503. PubMed ID: 15244410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and comparative properties of two amide-generating resin linkers for use in solid phase peptide synthesis.
    Deng FK; Mandal K; Luisier S; Kent SB
    J Pept Sci; 2010 Oct; 16(10):545-50. PubMed ID: 20824627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Backbone amide linker (BAL) strategy for Nalpha-9-fluorenylmethoxycarbonyl (Fmoc) solid-phase synthesis of peptide aldehydes.
    Kappel JC; Barany G
    J Pept Sci; 2005 Sep; 11(9):525-35. PubMed ID: 16001455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-phase intramolecular N-acyliminium Pictet-Spengler reactions as crossroads to scaffold diversity.
    Nielsen TE; Meldal M
    J Org Chem; 2004 May; 69(11):3765-73. PubMed ID: 15153007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploiting an inherent neighboring group effect of alpha-amino acids to synthesize extremely hindered dipeptides.
    Brown ZZ; Schafmeister CE
    J Am Chem Soc; 2008 Nov; 130(44):14382-3. PubMed ID: 18841897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trifluoroacetic anhydride-mediated solid-phase version of the Robinson-Gabriel synthesis of oxazoles.
    Pulici M; Quartieri F; Felder ER
    J Comb Chem; 2005; 7(3):463-73. PubMed ID: 15877475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-phase synthesis of 1-substituted tetrahydroisoquinoline derivatives employing BOC-protected tetrahydroisoquinoline carboxylic acids.
    Bunin BA; Dener JM; Kelly DE; Paras NA; Tario JD; Tushup SP
    J Comb Chem; 2004; 6(4):487-96. PubMed ID: 15244409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benzhydrylamine linker grafting: a strategy for the improved synthesis of C-terminal peptide amides.
    Alewood D; Hopping G; Brust A; Reid RC; Alewood PF
    J Pept Sci; 2010 Oct; 16(10):551-7. PubMed ID: 20862722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pentaerythrityltetramine scaffolds for solid-phase combinatorial chemistry.
    Virta P; Leppänen M; Lönnberg H
    J Org Chem; 2004 Mar; 69(6):2008-16. PubMed ID: 15058947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Backbone amide linker strategies for the solid-phase synthesis of C-terminal modified peptides.
    Alsina J; Kates SA; Barany G; Albericio F
    Methods Mol Biol; 2005; 298():195-208. PubMed ID: 16044548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of a new linker system cleaved using samarium(II) iodide. Application in the solid phase synthesis of carbonyl compounds.
    McKerlie F; Rudkin IM; Wynne G; Procter DJ
    Org Biomol Chem; 2005 Aug; 3(15):2805-16. PubMed ID: 16032358
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preactivated carboxyl linker for the rapid conjugation of alkylamines to oligonucleotides on solid support.
    Lebedev AV; Combs D; Hogrefe RI
    Bioconjug Chem; 2007; 18(5):1530-6. PubMed ID: 17877414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-phase synthesis of 1,2,3,4-tetrahydroisoquinoline derivatives employing support-bound tyrosine esters in the Pictet-Spengler reaction.
    Kane TR; Ly CQ; Kelly DE; Dener JM
    J Comb Chem; 2004; 6(4):564-72. PubMed ID: 15244418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbocations in action. Design, synthesis, and evaluation of a highly acid-sensitive naphthalene-based backbone amide linker for solid-phase synthesis.
    Pittelkow M; Boas U; Christensen JB
    Org Lett; 2006 Dec; 8(25):5817-20. PubMed ID: 17134280
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An acid-stable tert-butyldiarylsilyl (TBDAS) linker for solid-phase organic synthesis.
    Diblasi CM; Macks DE; Tan DS
    Org Lett; 2005 Apr; 7(9):1777-80. PubMed ID: 15844904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.