These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 16468863)

  • 1. Generation and characterization of highly vibrationally excited molecular beam.
    Hsu HC; Lyu JJ; Liu CL; Huang CL; Ni CK
    J Chem Phys; 2006 Feb; 124(5):054301. PubMed ID: 16468863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Feb; 124(5):054302. PubMed ID: 16468864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy-dependent dynamics of large-DeltaE collisions: highly vibrationally excited azulene (E=20 390 and 38 580 cm(-1)) with CO2.
    Yuan L; Du J; Mullin AS
    J Chem Phys; 2008 Jul; 129(1):014303. PubMed ID: 18624476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supercollisions and energy transfer of highly vibrationally excited molecules.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2005 Oct; 123(13):131102. PubMed ID: 16223268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Nov; 125(20):204309. PubMed ID: 17144702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 355 nm multiphoton dissociation and ionization of 2, 5-dihydroxyacetophenone.
    Dyakov YA; Tsai ST; Bagchi A; Tseng CM; Lee YT; Ni CK
    J Phys Chem A; 2009 Dec; 113(52):14987-94. PubMed ID: 20028179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transfer of highly vibrationally excited azulene. II. Photodissociation of azulene-Kr van der Waals clusters at 248 and 266 nm.
    Hsu HC; Liu CL; Lyu JJ; Ni CK
    J Chem Phys; 2006 Apr; 124(13):134303. PubMed ID: 16613451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular elimination of Br2 in 248 nm photolysis of bromoform probed by using cavity ring-down absorption spectroscopy.
    Huang HY; Chuang WT; Sharma RC; Hsu CY; Lin KC; Hu CH
    J Chem Phys; 2004 Sep; 121(11):5253-60. PubMed ID: 15352818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-dependent photoionization of azulene: competition between ionization and relaxation in highly excited states.
    Blanchet V; Raffael K; Turri G; Chatel B; Girard B; Garcia IA; Wilkinson I; Whitaker BJ
    J Chem Phys; 2008 Apr; 128(16):164318. PubMed ID: 18447450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imaging studies of the photodissociation of H2S+ cations. II.
    Webb AD; Kawanaka N; Dixon RN; Ashfold MN
    J Chem Phys; 2007 Dec; 127(22):224308. PubMed ID: 18081397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissociation dynamics of the methylsulfonyl radical and its photolytic precursor CH3SO2Cl.
    Alligood BW; FitzPatrick BL; Glassman EJ; Butler LJ; Lau KC
    J Chem Phys; 2009 Jul; 131(4):044305. PubMed ID: 19655865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopy of highly excited vibrational states of HCN in its ground electronic state.
    Martínez RZ; Lehmann KK; Carter S
    J Chem Phys; 2004 Jan; 120(2):691-703. PubMed ID: 15267904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence.
    Liu CL; Hsu HC; Hsu YC; Ni CK
    J Chem Phys; 2007 Sep; 127(10):104311. PubMed ID: 17867751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrationally mediated photodissociation of ammonia: the influence of N-H stretching vibrations on passage through conical intersections.
    Hause ML; Yoon YH; Crim FF
    J Chem Phys; 2006 Nov; 125(17):174309. PubMed ID: 17100441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine.
    Johnson JA; Kim K; Mayhew M; Mitchell DG; Sevy ET
    J Phys Chem A; 2008 Mar; 112(12):2543-52. PubMed ID: 18321080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resolution photofragment translational spectroscopy studies of the near ultraviolet photolysis of 2,5-dimethylpyrrole.
    Cronin B; Nix MG; Devine AL; Dixon RN; Ashfold MN
    Phys Chem Chem Phys; 2006 Feb; 8(5):599-612. PubMed ID: 16482302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum state-resolved collision relaxation of highly vibrationally excited SO2.
    Zhang M; Dai HL
    J Phys Chem A; 2007 Sep; 111(38):9632-9. PubMed ID: 17824678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanosecond time-resolved IR emission from molecules excited in a supersonic jet: intramolecular dynamics of NO2 near dissociation.
    Ma J; Liu P; Zhang M; Dai HL
    J Chem Phys; 2005 Oct; 123(15):154306. PubMed ID: 16252947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of vibrational excitation on the photoisomerization of trans-stilbene in solution.
    Briney KA; Herman L; Boucher DS; Dunkelberger AD; Crim FF
    J Phys Chem A; 2010 Sep; 114(36):9788-94. PubMed ID: 20825239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy transfer of highly vibrationally excited biphenyl.
    Hsu HC; Dyakov Y; Ni CK
    J Chem Phys; 2010 Nov; 133(17):174315. PubMed ID: 21054040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.