BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 16468864)

  • 1. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Feb; 124(5):054302. PubMed ID: 16468864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Nov; 125(20):204309. PubMed ID: 17144702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy transfer of highly vibrationally excited naphthalene. I. Translational collision energy dependence.
    Liu CL; Hsu HC; Hsu YC; Ni CK
    J Chem Phys; 2007 Sep; 127(10):104311. PubMed ID: 17867751
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy transfer of highly vibrationally excited naphthalene: collisions with CHF3, CF4, and Kr.
    Chen Hsu H; Tsai MT; Dyakov YA; Ni CK
    J Chem Phys; 2011 Aug; 135(5):054311. PubMed ID: 21823704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercollisions and energy transfer of highly vibrationally excited molecules.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2005 Oct; 123(13):131102. PubMed ID: 16223268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transfer of highly vibrationally excited naphthalene. III. Rotational effects.
    Liu CL; Hsu HC; Ni CK
    J Chem Phys; 2008 Apr; 128(16):164316. PubMed ID: 18447448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy transfer of highly vibrationally excited 2-methylnaphthalene: Methylation effects.
    Hsu HC; Liu CL; Hsu YC; Ni CK
    J Chem Phys; 2008 Jul; 129(4):044301. PubMed ID: 18681640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-dependent dynamics of large-DeltaE collisions: highly vibrationally excited azulene (E=20 390 and 38 580 cm(-1)) with CO2.
    Yuan L; Du J; Mullin AS
    J Chem Phys; 2008 Jul; 129(1):014303. PubMed ID: 18624476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy transfer of highly vibrationally excited azulene. II. Photodissociation of azulene-Kr van der Waals clusters at 248 and 266 nm.
    Hsu HC; Liu CL; Lyu JJ; Ni CK
    J Chem Phys; 2006 Apr; 124(13):134303. PubMed ID: 16613451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transfer of highly vibrationally excited naphthalene. II. Vibrational energy dependence and isotope and mass effects.
    Liu CL; Hsu HC; Hsu YC; Ni CK
    J Chem Phys; 2008 Mar; 128(12):124320. PubMed ID: 18376932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy transfer of highly vibrationally excited biphenyl.
    Hsu HC; Dyakov Y; Ni CK
    J Chem Phys; 2010 Nov; 133(17):174315. PubMed ID: 21054040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transfer between polyatomic molecules II: Energy transfer quantities and probability density functions in benzene, toluene, p-xylene, and azulene collisions.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Feb; 110(4):1541-51. PubMed ID: 16435815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy transfer of highly vibrationally excited phenanthrene and diphenylacetylene.
    Hsu HC; Tsai MT; Dyakov Y; Ni CK
    Phys Chem Chem Phys; 2011 May; 13(18):8313-21. PubMed ID: 21298156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy transfer between polyatomic molecules. 3. Energy transfer quantities and probability density functions in self-collisions of benzene, toluene, p-xylene and azulene.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Jul; 110(27):8477-87. PubMed ID: 16821831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy transfer between azulene and krypton: comparison between experiment and computation.
    Bernshtein V; Oref I
    J Chem Phys; 2006 Oct; 125(13):133105. PubMed ID: 17029431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkylation effects on the energy transfer of highly vibrationally excited naphthalene.
    Hsu HC; Tsai MT; Dyakov YA; Ni CK
    Chem Asian J; 2011 Nov; 6(11):3048-53. PubMed ID: 21780292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generation and characterization of highly vibrationally excited molecular beam.
    Hsu HC; Lyu JJ; Liu CL; Huang CL; Ni CK
    J Chem Phys; 2006 Feb; 124(5):054301. PubMed ID: 16468863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: effect of donor vibrational mode.
    Mitchell DG; Johnson AM; Johnson JA; Judd KA; Kim K; Mayhew M; Powell AL; Sevy ET
    J Phys Chem A; 2008 Feb; 112(6):1157-67. PubMed ID: 18201072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of weak and strong collisions: highly vibrationally excited pyrazine (E = 37900 cm(-1)) with DCl.
    Du J; Yuan L; Hsieh S; Lin F; Mullin AS
    J Phys Chem A; 2008 Oct; 112(39):9396-404. PubMed ID: 18729434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collisions of highly vibrationally excited pyrazine (E vib = 37,900 cm(-1)) with HOD: state-resolved probing of strong and weak collisions.
    Havey DK; Liu Q; Li Z; Elioff M; Mullin AS
    J Phys Chem A; 2007 Dec; 111(51):13321-9. PubMed ID: 18052137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.