BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16468998)

  • 1. A new protein superfamily includes two novel 3-methyladenine DNA glycosylases from Bacillus cereus, AlkC and AlkD.
    Alseth I; Rognes T; Lindbäck T; Solberg I; Robertsen K; Kristiansen KI; Mainieri D; Lillehagen L; Kolstø AB; Bjørås M
    Mol Microbiol; 2006 Mar; 59(5):1602-9. PubMed ID: 16468998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC.
    Shi R; Mullins EA; Shen XX; Lay KT; Yuen PK; David SS; Rokas A; Eichman BF
    EMBO J; 2018 Jan; 37(1):63-74. PubMed ID: 29054852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new family of proteins related to the HEAT-like repeat DNA glycosylases with affinity for branched DNA structures.
    Backe PH; Simm R; Laerdahl JK; Dalhus B; Fagerlund A; Okstad OA; Rognes T; Alseth I; Kolstø AB; Bjørås M
    J Struct Biol; 2013 Jul; 183(1):66-75. PubMed ID: 23623903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insight into repair of alkylated DNA by a new superfamily of DNA glycosylases comprising HEAT-like repeats.
    Dalhus B; Helle IH; Backe PH; Alseth I; Rognes T; Bjørås M; Laerdahl JK
    Nucleic Acids Res; 2007; 35(7):2451-9. PubMed ID: 17395642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new protein architecture for processing alkylation damaged DNA: the crystal structure of DNA glycosylase AlkD.
    Rubinson EH; Metz AH; O'Quin J; Eichman BF
    J Mol Biol; 2008 Aug; 381(1):13-23. PubMed ID: 18585735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA alkylation lesions and their repair in human cells: modification of the comet assay with 3-methyladenine DNA glycosylase (AlkD).
    Hašplová K; Hudecová A; Magdolénová Z; Bjøras M; Gálová E; Miadoková E; Dušinská M
    Toxicol Lett; 2012 Jan; 208(1):76-81. PubMed ID: 22019460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An unprecedented nucleic acid capture mechanism for excision of DNA damage.
    Rubinson EH; Gowda AS; Spratt TE; Gold B; Eichman BF
    Nature; 2010 Nov; 468(7322):406-11. PubMed ID: 20927102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Bacillus subtilis counterpart of the mammalian 3-methyladenine DNA glycosylase has hypoxanthine and 1,N6-ethenoadenine as preferred substrates.
    Aamodt RM; Falnes PØ; Johansen RF; Seeberg E; Bjørås M
    J Biol Chem; 2004 Apr; 279(14):13601-6. PubMed ID: 14729667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning and expression in Escherichia coli of a gene for an alkylbase DNA glycosylase from Saccharomyces cerevisiae; a homologue to the bacterial alkA gene.
    Berdal KG; Bjørås M; Bjelland S; Seeberg E
    EMBO J; 1990 Dec; 9(13):4563-8. PubMed ID: 2265619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Catalytic Role for C-H/π Interactions in Base Excision Repair by Bacillus cereus DNA Glycosylase AlkD.
    Parsons ZD; Bland JM; Mullins EA; Eichman BF
    J Am Chem Soc; 2016 Sep; 138(36):11485-8. PubMed ID: 27571247
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Target search and recognition mechanisms of glycosylase AlkD revealed by scanning FRET-FCS and Markov state models.
    Peng S; Wang X; Zhang L; He S; Zhao XS; Huang X; Chen C
    Proc Natl Acad Sci U S A; 2020 Sep; 117(36):21889-21895. PubMed ID: 32820079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions.
    Mullins EA; Shi R; Parsons ZD; Yuen PK; David SS; Igarashi Y; Eichman BF
    Nature; 2015 Nov; 527(7577):254-8. PubMed ID: 26524531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between base excision repair activity and toxicity of 3-methyladenine DNA glycosylases in an E. coli complementation system.
    Troll CJ; Adhikary S; Cueff M; Mitra I; Eichman BF; Camps M
    Mutat Res; 2014; 763-764():64-73. PubMed ID: 24709477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification and characterization of Caenorhabditis elegans NTH, a homolog of human endonuclease III: essential role of N-terminal region.
    Morinaga H; Yonekura S; Nakamura N; Sugiyama H; Yonei S; Zhang-Akiyama QM
    DNA Repair (Amst); 2009 Jul; 8(7):844-51. PubMed ID: 19481506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the Search Complex and Recognition Mechanism of the AlkD-DNA Glycosylase.
    Votaw KA; McCullagh M
    J Phys Chem B; 2019 Jan; 123(1):95-105. PubMed ID: 30525620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of DNA alkylation damage.
    Bouziane M; Miao F; Ye N; Holmquist G; Chyzak G; O'Connor TR
    Acta Biochim Pol; 1998; 45(1):191-202. PubMed ID: 9701511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function studies of an unusual 3-methyladenine DNA glycosylase II (AlkA) from Deinococcus radiodurans.
    Moe E; Hall DR; Leiros I; Monsen VT; Timmins J; McSweeney S
    Acta Crystallogr D Biol Crystallogr; 2012 Jun; 68(Pt 6):703-12. PubMed ID: 22683793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An HPLC-tandem mass spectrometry method for simultaneous detection of alkylated base excision repair products.
    Mullins EA; Rubinson EH; Pereira KN; Calcutt MW; Christov PP; Eichman BF
    Methods; 2013 Nov; 64(1):59-66. PubMed ID: 23876937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Biology of the HEAT-Like Repeat Family of DNA Glycosylases.
    Shi R; Shen XX; Rokas A; Eichman BF
    Bioessays; 2018 Nov; 40(11):e1800133. PubMed ID: 30264543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alkylpurine glycosylase D employs DNA sculpting as a strategy to extrude and excise damaged bases.
    Kossmann B; Ivanov I
    PLoS Comput Biol; 2014 Jul; 10(7):e1003704. PubMed ID: 24992034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.