These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16469360)

  • 1. Biodegradation of 2,4,6-trichlorophenol and associated hydraulic conductivity reduction in sand-bed columns.
    Antizar-Ladislao B; Galil NI
    Chemosphere; 2006 Jun; 64(3):339-49. PubMed ID: 16469360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of natural organic matter in long-term, continuous-flow experiments simulating artificial ground water recharge for drinking water production.
    Kolehmainen RE; Kortelainen NM; Langwaldt JH; Puhakka JA
    J Environ Qual; 2009; 38(1):44-52. PubMed ID: 19141794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of biodegradation during remediation of consecutive accidental spills of chlorophenols in a sandy aquifer.
    Antizar-Ladislao B; Galil NI
    Water Sci Technol; 2003; 47(9):157-64. PubMed ID: 12830955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A laboratory study of landfill-leachate transport in soils.
    Islam J; Singhal N
    Water Res; 2004 Apr; 38(8):2035-42. PubMed ID: 15087184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of tracer tests to investigate changes in flow and transport properties due to bioclogging of porous media.
    Seifert D; Engesgaard P
    J Contam Hydrol; 2007 Aug; 93(1-4):58-71. PubMed ID: 17336422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced in situ bioremediation of phenol in bioestimulated unsaturated and saturated sand-bed columns.
    Antizar-Ladislao B; Galil NI
    Water Environ Res; 2006 Dec; 78(13):2447-55. PubMed ID: 17243244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation kinetics of 2,4,6-trichlorophenol by an acclimated mixed microbial culture under aerobic conditions.
    Snyder CJ; Asghar M; Scharer JM; Legge RL
    Biodegradation; 2006 Dec; 17(6):535-44. PubMed ID: 16489415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of propylene glycol and associated hydrodynamic effects in sand.
    Bielefeldt AR; Illangasekare T; Uttecht M; LaPlante R
    Water Res; 2002 Apr; 36(7):1707-14. PubMed ID: 12044070
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers: laboratory studies.
    Choi JH; Kim YH; Choi SJ
    Chemosphere; 2007 Apr; 67(8):1551-7. PubMed ID: 17287004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biological treatment of 2,4,6-trichlorophenol (TCP) containing wastewater in a hybrid bioreactor system with effluent recycle.
    Eker S; Kargi F
    J Environ Manage; 2009 Feb; 90(2):692-8. PubMed ID: 18276060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Treatment of turkey processing wastewater with sand filtration.
    Kang YW; Mancl KM; Tuovinen OH
    Bioresour Technol; 2007 May; 98(7):1460-6. PubMed ID: 17092706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of 2,4,6-trichlorophenol in a packed-bed biofilm reactor equipped with an internal net draft tube riser for aeration and liquid circulation.
    Jesús AG; Romano-Baez FJ; Leyva-Amezcua L; Juárez-Ramírez C; Ruiz-Ordaz N; Galíndez-Mayer J
    J Hazard Mater; 2009 Jan; 161(2-3):1140-9. PubMed ID: 18539387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sand filter clogging by septic tank effluent.
    Spychała M; Błazejewski R
    Water Sci Technol; 2003; 48(11-12):153-9. PubMed ID: 14753531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sand box experiments with bioclogging of porous media: hydraulic conductivity reductions.
    Seifert D; Engesgaard P
    J Contam Hydrol; 2012 Aug; 136-137():1-9. PubMed ID: 22647500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosorption of phenol and chlorophenols by acclimated residential biomass under bioremediation conditions in a sandy aquifer.
    Antizar-Ladislao B; Galil NI
    Water Res; 2004 Jan; 38(2):267-76. PubMed ID: 14675638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of long-term partial aeration on the removal of 2,4,6-trichlorophenol in an initially methanogenic fluidized bed bioreactor.
    Garibay-Orijel C; Hoyo-Vadillo C; Ponce-Noyola T; García-Mena J; Poggi-Varaldo HM
    Biotechnol Bioeng; 2006 Aug; 94(5):949-60. PubMed ID: 16586508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of microbial activity on the hydraulic properties of fractured chalk.
    Arnon S; Adar E; Ronen Z; Yakirevich A; Nativ R
    J Contam Hydrol; 2005 Feb; 76(3-4):315-36. PubMed ID: 15683886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term flow rates and biomat zone hydrology in soil columns receiving septic tank effluent.
    Beal CD; Gardner EA; Kirchhof G; Menzies NW
    Water Res; 2006 Jul; 40(12):2327-38. PubMed ID: 16764900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of bioremediation of chlorophenols in a sandy aquifer.
    Antizar-Ladislao B; Galil NI
    Water Res; 2003 Jan; 37(1):238-44. PubMed ID: 12465806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the biofiltration of geosmin by seeding sand filter columns with a consortium of geosmin-degrading bacteria.
    McDowall B; Hoefel D; Newcombe G; Saint CP; Ho L
    Water Res; 2009 Feb; 43(2):433-40. PubMed ID: 19010510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.