BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16469438)

  • 1. A portable and low-cost fMRI compatible pneumatic system for the investigation of the somatosensensory system in clinical and research environments.
    Wienbruch C; Candia V; Svensson J; Kleiser R; Kollias SS
    Neurosci Lett; 2006 May; 398(3):183-8. PubMed ID: 16469438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dodecapus: An MR-compatible system for somatosensory stimulation.
    Huang RS; Sereno MI
    Neuroimage; 2007 Feb; 34(3):1060-73. PubMed ID: 17182259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cuff-type pneumatic stimulator for studying somatosensory evoked responses with fMRI.
    Gallasch E; Fend M; Rafolt D; Nardone R; Kunz A; Kronbichler M; Beisteiner R; Golaszewski S
    Neuroimage; 2010 Apr; 50(3):1067-73. PubMed ID: 20079447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. fMRI reflects functional connectivity of human somatosensory cortex.
    Blatow M; Nennig E; Durst A; Sartor K; Stippich C
    Neuroimage; 2007 Sep; 37(3):927-36. PubMed ID: 17629500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new device for tactile stimulation during fMRI.
    Dresel C; Parzinger A; Rimpau C; Zimmer C; Ceballos-Baumann AO; Haslinger B
    Neuroimage; 2008 Feb; 39(3):1094-103. PubMed ID: 17997331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact force- and amplitude-controllable vibrating probe for somatosensory mapping of plantar afferences with fMRI.
    Gallasch E; Golaszewski SM; Fend M; Siedentopf CM; Koppelstaetter F; Eisner W; Gerstenbrand F; Felber SR
    J Magn Reson Imaging; 2006 Nov; 24(5):1177-82. PubMed ID: 17031838
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral activation using a MR-compatible piezoelectric actuator with adjustable vibration frequencies and in vivo wave propagation control.
    Gizewski ER; Koeze O; Uffmann K; de Greiff A; Ladd ME; Forsting M
    Neuroimage; 2005 Feb; 24(3):723-30. PubMed ID: 15652307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel technique for examining human brain activity associated with pedaling using fMRI.
    Mehta JP; Verber MD; Wieser JA; Schmit BD; Schindler-Ivens SM
    J Neurosci Methods; 2009 May; 179(2):230-9. PubMed ID: 19428532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional MRI study of the primary somatosensory cortex in comatose survivors of cardiac arrest.
    Gofton TE; Chouinard PA; Young GB; Bihari F; Nicolle MW; Lee DH; Sharpe MD; Yen YF; Takahashi AM; Mirsattari SM
    Exp Neurol; 2009 Jun; 217(2):320-7. PubMed ID: 19306870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studying the human somatosensory hand area: A new way to compare fMRI and MEG.
    Stoeckel MC; Pollok B; Schnitzler A; Seitz RJ
    J Neurosci Methods; 2007 Aug; 164(2):280-91. PubMed ID: 17597225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stimulus frequency dependence of blood oxygenation level-dependent functional magnetic resonance imaging signals in the somatosensory cortex of rats.
    Kida I; Yamamoto T
    Neurosci Res; 2008 Sep; 62(1):25-31. PubMed ID: 18602178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EEG and FMRI coregistration to investigate the cortical oscillatory activities during finger movement.
    Formaggio E; Storti SF; Avesani M; Cerini R; Milanese F; Gasparini A; Acler M; Pozzi Mucelli R; Fiaschi A; Manganotti P
    Brain Topogr; 2008 Dec; 21(2):100-11. PubMed ID: 18648924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A brush stimulator for functional brain imaging.
    Jousmäki V; Nishitani N; Hari R
    Clin Neurophysiol; 2007 Dec; 118(12):2620-4. PubMed ID: 17950032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluctuations in electrodermal activity reveal variations in single trial brain responses to painful laser stimuli--a fMRI/EEG study.
    Mobascher A; Brinkmeyer J; Warbrick T; Musso F; Wittsack HJ; Stoermer R; Saleh A; Schnitzler A; Winterer G
    Neuroimage; 2009 Feb; 44(3):1081-92. PubMed ID: 18848631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavioral correlates of negative BOLD signal changes in the primary somatosensory cortex.
    Kastrup A; Baudewig J; Schnaudigel S; Huonker R; Becker L; Sohns JM; Dechent P; Klingner C; Witte OW
    Neuroimage; 2008 Jul; 41(4):1364-71. PubMed ID: 18495495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, construction, and validation of an MRI-compatible vibrotactile stimulator intended for clinical use.
    Chakravarty MM; Broadbent S; Rosa-Neto P; Lambert CM; Collins DL
    J Neurosci Methods; 2009 Oct; 184(1):129-35. PubMed ID: 19631690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maturation of somatosensory cortical processing from birth to adulthood revealed by magnetoencephalography.
    Pihko E; Nevalainen P; Stephen J; Okada Y; Lauronen L
    Clin Neurophysiol; 2009 Aug; 120(8):1552-61. PubMed ID: 19560400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained increase of somatosensory cortex excitability by tactile coactivation studied by paired median nerve stimulation in humans correlates with perceptual gain.
    Höffken O; Veit M; Knossalla F; Lissek S; Bliem B; Ragert P; Dinse HR; Tegenthoff M
    J Physiol; 2007 Oct; 584(Pt 2):463-71. PubMed ID: 17702814
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in low back pain behavior are reflected in the cerebral response to tactile stimulation of the lower back.
    Lloyd D; Findlay G; Roberts N; Nurmikko T
    Spine (Phila Pa 1976); 2008 May; 33(12):1372-7. PubMed ID: 18496351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined EEG and MEG analysis of early somatosensory evoked activity in children and adolescents with focal epilepsies.
    Bast T; Wright T; Boor R; Harting I; Feneberg R; Rupp A; Hoechstetter K; Rating D; Baumgärtner U
    Clin Neurophysiol; 2007 Aug; 118(8):1721-35. PubMed ID: 17572142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.