These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 16469548)

  • 1. A molecular dynamics simulation of SNase and its hydration shell at high temperature and high pressure.
    Smolin N; Winter R
    Biochim Biophys Acta; 2006 Mar; 1764(3):522-34. PubMed ID: 16469548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural characterization of the pressure-denatured state and unfolding/refolding kinetics of staphylococcal nuclease by synchrotron small-angle X-ray scattering and Fourier-transform infrared spectroscopy.
    Panick G; Malessa R; Winter R; Rapp G; Frye KJ; Royer CA
    J Mol Biol; 1998 Jan; 275(2):389-402. PubMed ID: 9466917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: a molecular dynamics computer simulation study.
    Smolin N; Winter R
    J Phys Chem B; 2008 Jan; 112(3):997-1006. PubMed ID: 18171045
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of Staphylococcal nuclease.
    Seemann H; Winter R; Royer CA
    J Mol Biol; 2001 Apr; 307(4):1091-102. PubMed ID: 11286558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying pressure denaturation of a protein by molecular dynamics simulations.
    Sarupria S; Ghosh T; García AE; Garde S
    Proteins; 2010 May; 78(7):1641-51. PubMed ID: 20146357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a quantitative understanding of protein hydration and volumetric properties.
    Mitra L; Rouget JB; Garcia-Moreno B; Royer CA; Winter R
    Chemphyschem; 2008 Dec; 9(18):2715-21. PubMed ID: 18814170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal breaking of spanning water networks in the hydration shell of proteins.
    Brovchenko I; Krukau A; Smolin N; Oleinikova A; Geiger A; Winter R
    J Chem Phys; 2005 Dec; 123(22):224905. PubMed ID: 16375508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TMAO and urea in the hydration shell of the protein SNase.
    Smolin N; Voloshin VP; Anikeenko AV; Geiger A; Winter R; Medvedev NN
    Phys Chem Chem Phys; 2017 Mar; 19(9):6345-6357. PubMed ID: 28116386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein stabilization by osmolytes from hyperthermophiles: effect of mannosylglycerate on the thermal unfolding of recombinant nuclease a from Staphylococcus aureus studied by picosecond time-resolved fluorescence and calorimetry.
    Faria TQ; Lima JC; Bastos M; Maçanita AL; Santos H
    J Biol Chem; 2004 Nov; 279(47):48680-91. PubMed ID: 15347691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the contribution of internal cavities to the volume change of protein unfolding under pressure.
    Frye KJ; Royer CA
    Protein Sci; 1998 Oct; 7(10):2217-22. PubMed ID: 9792110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations.
    Ikura T; Tsurupa GP; Kuwajima K
    Biochemistry; 1997 May; 36(21):6529-38. PubMed ID: 9174370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring volume, compressibility and hydration changes of folded proteins upon compression.
    Voloshin VP; Medvedev NN; Smolin N; Geiger A; Winter R
    Phys Chem Chem Phys; 2015 Apr; 17(13):8499-508. PubMed ID: 25685984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study of the cosolvent effect on the partial molar volume change of staphylococcal nuclease associated with pressure denaturation.
    Yamazaki T; Imai T; Hirata F; Kovalenko A
    J Phys Chem B; 2007 Feb; 111(5):1206-12. PubMed ID: 17266276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure-induced unfolding/refolding of ribonuclease A: static and kinetic Fourier transform infrared spectroscopy study.
    Panick G; Winter R
    Biochemistry; 2000 Feb; 39(7):1862-9. PubMed ID: 10677237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crowding effects on the temperature and pressure dependent structure, stability and folding kinetics of Staphylococcal Nuclease.
    Erlkamp M; Grobelny S; Winter R
    Phys Chem Chem Phys; 2014 Apr; 16(13):5965-76. PubMed ID: 24549181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein crowding impedes pressure-induced unfolding of staphylococcal nuclease.
    Wang S; Tate MW; Gruner SM
    Biochim Biophys Acta; 2012 Jul; 1820(7):957-61. PubMed ID: 22503923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of chaotropic and kosmotropic cosolvents on the pressure-induced unfolding and denaturation of proteins: an FT-IR study on staphylococcal nuclease.
    Herberhold H; Royer CA; Winter R
    Biochemistry; 2004 Mar; 43(12):3336-45. PubMed ID: 15035605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutations can cause large changes in the conformation of a denatured protein.
    Flanagan JM; Kataoka M; Fujisawa T; Engelman DM
    Biochemistry; 1993 Oct; 32(39):10359-70. PubMed ID: 8399179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible thermal denaturation of staphylococcal nuclease: a Fourier transformed infrared spectrum study.
    Xie L; Jing GZ; Zhou JM
    Arch Biochem Biophys; 1996 Apr; 328(1):122-8. PubMed ID: 8638920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volumetric and spectroscopic characterizations of the native and acid-induced denatured states of staphylococcal nuclease.
    Filfil R; Chalikian TV
    J Mol Biol; 2000 Jun; 299(3):827-42. PubMed ID: 10835287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.