BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 1646959)

  • 1. Tunicamycin-resistant variants from five species of Leishmania contain amplified DNA in extrachromosomal circles of different sizes with a transcriptionally active homologous region.
    Katakura K; Peng Y; Pithawalla R; Detke S; Chang KP
    Mol Biochem Parasitol; 1991 Feb; 44(2):233-43. PubMed ID: 1646959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N-acetylglucosamine-1-phosphate transferase gene is conserved in five Leishmania spp. and overexpressed due to its amplification in their tunicamycin-resistant variants.
    Liu X; Chang KP
    Mol Biochem Parasitol; 1993 May; 59(1):177-9. PubMed ID: 8390612
    [No Abstract]   [Full Text] [Related]  

  • 3. The 63-kilobase circular amplicon of tunicamycin-resistant Leishmania amazonensis contains a functional N-acetylglucosamine-1-phosphate transferase gene that can be used as a dominant selectable marker in transfection.
    Liu X; Chang KP
    Mol Cell Biol; 1992 Sep; 12(9):4112-22. PubMed ID: 1324414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leishmania gene amplification: a mechanism of drug resistance.
    Segovia M
    Ann Trop Med Parasitol; 1994 Apr; 88(2):123-30. PubMed ID: 8067807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA amplification in tunicamycin-resistant Leishmania mexicana. Multicopies of a single 63-kilobase supercoiled molecule and their expression.
    Detke S; Chaudhuri G; Kink JA; Chang KP
    J Biol Chem; 1988 Mar; 263(7):3418-24. PubMed ID: 2449440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification and molecular cloning of the hamster tunicamycin-sensitive N-acetylglucosamine-1-phosphate transferase gene. The hamster and yeast enzymes share a common peptide sequence.
    Lehrman MA; Zhu XY; Khounlo S
    J Biol Chem; 1988 Dec; 263(36):19796-803. PubMed ID: 2848842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of the switch of kinetoplast DNA minicircle dominance during development and reversion of drug resistance in Leishmania.
    Lee ST; Tarn C; Chang KP
    Mol Biochem Parasitol; 1993 Apr; 58(2):187-203. PubMed ID: 8386802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biological and biochemical characterization of tunicamycin-resistant Leishmania mexicana: mechanism of drug resistance and virulence.
    Kink JA; Chang KP
    Infect Immun; 1987 Jul; 55(7):1692-700. PubMed ID: 3036710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplified DNAs in laboratory stocks of Leishmania tarentolae: extrachromosomal circles structurally and functionally similar to the inverted-H-region amplification of methotrexate-resistant Leishmania major.
    Petrillo-Peixoto ML; Beverley SM
    Mol Cell Biol; 1988 Dec; 8(12):5188-99. PubMed ID: 3244352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. N-glycosylation as a biochemical basis for virulence in Leishmania mexicana amazonensis.
    Kink JA; Chang KP
    Mol Biochem Parasitol; 1988 Jan; 27(2-3):181-90. PubMed ID: 2830512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A DNA sequence (LD1) which occurs in several genomic organizations in Leishmania.
    Tripp CA; Myler PJ; Stuart K
    Mol Biochem Parasitol; 1991 Aug; 47(2):151-6. PubMed ID: 1682806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization by pulse-field electrophoresis of a new region of DNA amplification containing the M2 subunit of ribonucleotide reductase in hydroxyurea-resistant Leishmania.
    Lye LF; Hsu JY; Singh AK; Su KE; Lee ST
    Parasitol Res; 1999 Mar; 85(3):188-93. PubMed ID: 9951961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct and inverted DNA repeats associated with P-glycoprotein gene amplification in drug resistant Leishmania.
    Ouellette M; Hettema E; Wüst D; Fase-Fowler F; Borst P
    EMBO J; 1991 Apr; 10(4):1009-16. PubMed ID: 1672636
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of sequence changes in kinetoplast DNA maxicircles of drug-resistant Leishmania.
    Lee ST; Tarn C; Wang CY
    Mol Biochem Parasitol; 1992 Dec; 56(2):197-207. PubMed ID: 1336569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-existence of circular and multiple linear amplicons in methotrexate-resistant Leishmania.
    Olmo A; Arrebola R; Bernier V; González-Pacanowska D; Ruiz-Pérez LM
    Nucleic Acids Res; 1995 Aug; 23(15):2856-64. PubMed ID: 7659507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of gene amplification in tunicamycin-resistant Chinese hamster ovary cells.
    Scocca JR; Hartog KO; Krag SS
    Biochem Biophys Res Commun; 1988 Nov; 156(3):1063-9. PubMed ID: 2847724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homologous recombination between direct repeat sequences yields P-glycoprotein containing amplicons in arsenite resistant Leishmania.
    Grondin K; Papadopoulou B; Ouellette M
    Nucleic Acids Res; 1993 Apr; 21(8):1895-901. PubMed ID: 8098523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunicamycin-resistant Leishmania mexicana amazonensis: expression of virulence associated with an increased activity of N-acetylglucosaminyltransferase and amplification of its presumptive gene.
    Kink JA; Chang KP
    Proc Natl Acad Sci U S A; 1987 Mar; 84(5):1253-7. PubMed ID: 2950522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene amplification in amphotericin B-resistant Leishmania tarentolae.
    Singh AK; Papadopoulou B; Ouellette M
    Exp Parasitol; 2001 Nov; 99(3):141-7. PubMed ID: 11846524
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unstable DNA amplifications in methotrexate-resistant Leishmania consist of extrachromosomal circles which relocalize during stabilization.
    Beverley SM; Coderre JA; Santi DV; Schimke RT
    Cell; 1984 Sep; 38(2):431-9. PubMed ID: 6467372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.