These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 16469743)
41. Binding of ferredoxin to ferredoxin:NADP+ oxidoreductase: the role of carboxyl groups, electrostatic surface potential, and molecular dipole moment. De Pascalis AR; Jelesarov I; Ackermann F; Koppenol WH; Hirasawa M; Knaff DB; Bosshard HR Protein Sci; 1993 Jul; 2(7):1126-35. PubMed ID: 8102922 [TBL] [Abstract][Full Text] [Related]
42. Lys75 of Anabaena ferredoxin-NADP+ reductase is a critical residue for binding ferredoxin and flavodoxin during electron transfer. Martínez-Júlvez M; Medina M; Hurley JK; Hafezi R; Brodie TB; Tollin G; Gómez-Moreno C Biochemistry; 1998 Sep; 37(39):13604-13. PubMed ID: 9753447 [TBL] [Abstract][Full Text] [Related]
43. Siroheme- and [Fe4-S4]-dependent NirA from Mycobacterium tuberculosis is a sulfite reductase with a covalent Cys-Tyr bond in the active site. Schnell R; Sandalova T; Hellman U; Lindqvist Y; Schneider G J Biol Chem; 2005 Jul; 280(29):27319-28. PubMed ID: 15917234 [TBL] [Abstract][Full Text] [Related]
44. Structural analysis of interactions for complex formation between Ferredoxin-NADP+ reductase and its protein partners. Mayoral T; Martínez-Júlvez M; Pérez-Dorado I; Sanz-Aparicio J; Gómez-Moreno C; Medina M; Hermoso JA Proteins; 2005 May; 59(3):592-602. PubMed ID: 15789405 [TBL] [Abstract][Full Text] [Related]
45. NMR structure of the [2Fe-2S] ferredoxin domain from soluble methane monooxygenase reductase and interaction with its hydroxylase. Müller J; Lugovskoy AA; Wagner G; Lippard SJ Biochemistry; 2002 Jan; 41(1):42-51. PubMed ID: 11772001 [TBL] [Abstract][Full Text] [Related]
46. Tertiary structure of [2Fe-2S] ferredoxin from Spirulina platensis refined at 2.5 A resolution: structural comparisons of plant-type ferredoxins and an electrostatic potential analysis. Fukuyama K; Ueki N; Nakamura H; Tsukihara T; Matsubara H J Biochem; 1995 May; 117(5):1017-23. PubMed ID: 8586613 [TBL] [Abstract][Full Text] [Related]
47. A new structural insight into differential interaction of cyanobacterial and plant ferredoxins with nitrite reductase as revealed by NMR and X-ray crystallographic studies. Sakakibara Y; Kimura H; Iwamura A; Saitoh T; Ikegami T; Kurisu G; Hase T J Biochem; 2012 May; 151(5):483-92. PubMed ID: 22427434 [TBL] [Abstract][Full Text] [Related]
48. NADP(H) allosterically regulates the interaction between ferredoxin and ferredoxin-NADP Kimata-Ariga Y; Chikuma Y; Saitoh T; Miyata M; Yanagihara Y; Yamane K; Hase T FEBS Open Bio; 2019 Dec; 9(12):2126-2136. PubMed ID: 31665566 [TBL] [Abstract][Full Text] [Related]
49. Electrostatic interactions stabilizing ferredoxin electron transfer complexes. Disruption by "conservative" mutations. Coghlan VM; Vickery LE J Biol Chem; 1992 May; 267(13):8932-5. PubMed ID: 1349603 [TBL] [Abstract][Full Text] [Related]
50. Comparison of the binding sites of plant ferredoxin for two ferredoxin-dependent enzymes. De Pascalis AR; Schürmann P; Bosshard HR FEBS Lett; 1994 Jan; 337(3):217-20. PubMed ID: 8293803 [TBL] [Abstract][Full Text] [Related]
51. Structural and mutational studies of an electron transfer complex of maize sulfite reductase and ferredoxin. Kim JY; Nakayama M; Toyota H; Kurisu G; Hase T J Biochem; 2016 Aug; 160(2):101-9. PubMed ID: 26920048 [TBL] [Abstract][Full Text] [Related]
52. Structure-function relationships in Anabaena ferredoxin: correlations between X-ray crystal structures, reduction potentials, and rate constants of electron transfer to ferredoxin:NADP+ reductase for site-specific ferredoxin mutants. Hurley JK; Weber-Main AM; Stankovich MT; Benning MM; Thoden JB; Vanhooke JL; Holden HM; Chae YK; Xia B; Cheng H; Markley JL; Martinez-Júlvez M; Gómez-Moreno C; Schmeits JL; Tollin G Biochemistry; 1997 Sep; 36(37):11100-17. PubMed ID: 9287153 [TBL] [Abstract][Full Text] [Related]
53. Spinach siroheme enzymes: Isolation and characterization of ferredoxin-sulfite reductase and comparison of properties with ferredoxin-nitrite reductase. Krueger RJ; Siegel LM Biochemistry; 1982 Jun; 21(12):2892-904. PubMed ID: 7104302 [TBL] [Abstract][Full Text] [Related]
54. Structure-function relationships in the ferredoxin/ferredoxin: NADP+ reductase system from Anabaena. Hurley JK; Fillat M; Gómez-Moreno C; Tollin G Biochimie; 1995; 77(7-8):539-48. PubMed ID: 8589065 [TBL] [Abstract][Full Text] [Related]
55. Electrostatic forces involved in orienting Anabaena ferredoxin during binding to Anabaena ferredoxin:NADP+ reductase: site-specific mutagenesis, transient kinetic measurements, and electrostatic surface potentials. Hurley JK; Hazzard JT; Martínez-Júlvez M; Medina M; Gómez-Moreno C; Tollin G Protein Sci; 1999 Aug; 8(8):1614-22. PubMed ID: 10452605 [TBL] [Abstract][Full Text] [Related]
56. Insights into the design of a hybrid system between Anabaena ferredoxin-NADP+ reductase and bovine adrenodoxin. Faro M; Schiffler B; Heinz A; Nogués I; Medina M; Bernhardt R; Gómez-Moreno C Eur J Biochem; 2003 Feb; 270(4):726-35. PubMed ID: 12581212 [TBL] [Abstract][Full Text] [Related]
57. A three-domain iron-sulfur flavoprotein obtained through gene fusion of ferredoxin and ferredoxin-NADP+ reductase from spinach leaves. Aliverti A; Zanetti G Biochemistry; 1997 Dec; 36(48):14771-7. PubMed ID: 9398197 [TBL] [Abstract][Full Text] [Related]
58. High-resolution studies of hydride transfer in the ferredoxin:NADP Kean KM; Carpenter RA; Pandini V; Zanetti G; Hall AR; Faber R; Aliverti A; Karplus PA FEBS J; 2017 Oct; 284(19):3302-3319. PubMed ID: 28783258 [TBL] [Abstract][Full Text] [Related]