BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 16469867)

  • 1. Amplification of the major satellite DNA family (FA-SAT) in a cat fibrosarcoma might be related to chromosomal instability.
    Santos S; Chaves R; Adega F; Bastos E; Guedes-Pinto H
    J Hered; 2006; 97(2):114-8. PubMed ID: 16469867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromosomal localization of the major satellite DNA family (FA-SAT) in the domestic cat.
    Santos S; Chaves R; Guedes-Pinto H
    Cytogenet Genome Res; 2004; 107(1-2):119-22. PubMed ID: 15305066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intra-specific variability and unusual organization of the repetitive units in a satellite DNA from Rana dalmatina: molecular evidence of a new mechanism of DNA repair acting on satellite DNA.
    Feliciello I; Picariello O; Chinali G
    Gene; 2006 Nov; 383():81-92. PubMed ID: 16956734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal organization of amplified chromosome 12 sequences in mesenchymal tumors detected by fluorescence in situ hybridization.
    Gisselsson D; Höglund M; Mertens F; Mitelman F; Mandahl N
    Genes Chromosomes Cancer; 1998 Nov; 23(3):203-12. PubMed ID: 9790500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation, cloning and characterization of two major satellite DNA families of rabbit (Oryctolagus cuniculus).
    Ekes C; Csonka E; Hadlaczky G; Cserpán I
    Gene; 2004 Dec; 343(2):271-9. PubMed ID: 15588582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Satellite DNA sequences flank amplified DHFR domains in marker chromosomes of mouse fibrosarcoma cells.
    Riva P; Orlando S; Labella T; Larizza L
    Genetica; 1994; 94(1):9-16. PubMed ID: 7729700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contiguous arrays of satellites 1, 3, and beta form a 1.5-Mb domain on chromosome 22p.
    Shiels C; Coutelle C; Huxley C
    Genomics; 1997 Aug; 44(1):35-44. PubMed ID: 9286698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin and evolution of the variability in a Y-specific satellite-DNA of Rumex acetosa and its relatives.
    Navajas-Pérez R; Schwarzacher T; de la Herrán R; Ruiz Rejón C; Ruiz Rejón M; Garrido-Ramos MA
    Gene; 2006 Mar; 368():61-71. PubMed ID: 16324803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chromosome polymorphism in Astyanax fasciatus (Teleostei, Characidae). 2--Chromosomal location of a satellite DNA.
    Pazza R; Frehner Kavalco K; Bertollo LA
    Cytogenet Genome Res; 2008; 122(1):61-6. PubMed ID: 18931487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Satellite DNA in the karyotype evolution of domestic animals--clinical considerations.
    Adega F; Guedes-Pinto H; Chaves R
    Cytogenet Genome Res; 2009; 126(1-2):12-20. PubMed ID: 20016153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FA-SAT Is an Old Satellite DNA Frozen in Several Bilateria Genomes.
    Chaves R; Ferreira D; Mendes-da-Silva A; Meles S; Adega F
    Genome Biol Evol; 2017 Nov; 9(11):3073-3087. PubMed ID: 29608678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA.
    Martins C; Ferreira IA; Oliveira C; Foresti F; Galetti PM
    Genetica; 2006 May; 127(1-3):133-41. PubMed ID: 16850219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A GC-rich satellite DNA and karyology of the bivalve mollusk Donax trunculus: a dominance of GC-rich heterochromatin.
    Petrović V; Pérez-García C; Pasantes JJ; Satović E; Prats E; Plohl M
    Cytogenet Genome Res; 2009; 124(1):63-71. PubMed ID: 19372670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bovine satellite DNA induces heterochromatinization of host chromosomal DNA in cells of trassatellite mouse embryonal carcinoma.
    Suchkova IO; Baranova TV; Kustova ME; Kisljakova TV; Vassiliev VB; Slominskaja NO; Alenina NV; Patkin EL
    Tsitologiia; 2004; 46(1):53-61. PubMed ID: 15112432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical organization of the 1.709 satellite IV DNA family in Bovini and Tragelaphini tribes of the Bovidae: sequence and chromosomal evolution.
    Adega F; Chaves R; Guedes-Pinto H; Heslop-Harrison JS
    Cytogenet Genome Res; 2006; 114(2):140-6. PubMed ID: 16825766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Instability of repetitive units of foreign centromeric satellite DNA in transgenic mice and transfected cells].
    Suchkova IO; Slominskaia NA; Kustova ME; Baranova TV; Golubkov VI; Sorokin AV; Vasil'ev VB; Patkin EL
    Genetika; 2004 Aug; 40(8):1034-45. PubMed ID: 15523841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variable stability of chromosomes containing amplified alpha-satellite sequences in human mesenchymal tumours.
    Gisselsson D; Höglund M; Mertens F; Mandahl N
    Chromosoma; 1999 Sep; 108(5):271-7. PubMed ID: 10525963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The specific organisation of satellite DNA sequences on the X-chromosome of Mus musculus: partial independence of chromosome evolution.
    Brown SD; Dover GA
    Nucleic Acids Res; 1980 Feb; 8(4):781-92. PubMed ID: 6253924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different evolutionary trails in the related genomes Cricetus cricetus and Peromyscus eremicus (Rodentia, Cricetidae) uncovered by orthologous satellite DNA repositioning.
    Louzada S; Paço A; Kubickova S; Adega F; Guedes-Pinto H; Rubes J; Chaves R
    Micron; 2008 Dec; 39(8):1149-55. PubMed ID: 18602266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Centromeric alpha-satellite DNA break in reciprocal translocations.
    Wang JC; Hajianpour A; Habibian R
    Cytogenet Genome Res; 2009; 125(4):329-33. PubMed ID: 19864896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.