These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 16469880)

  • 1. Reactive and nonreactive scattering of H2 from a metal surface is electronically adiabatic.
    Nieto P; Pijper E; Barredo D; Laurent G; Olsen RA; Baerends EJ; Kroes GJ; Farías D
    Science; 2006 Apr; 312(5770):86-9. PubMed ID: 16469880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactive and nonreactive scattering of N2 from Ru(0001): a six-dimensional adiabatic study.
    Díaz C; Vincent JK; Krishnamohan GP; Olsen RA; Kroes GJ; Honkala K; Norskov JK
    J Chem Phys; 2006 Sep; 125(11):114706. PubMed ID: 16999500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum and classical dynamics of reactive scattering of H2 from metal surfaces.
    Kroes GJ; Díaz C
    Chem Soc Rev; 2016 Jun; 45(13):3658-700. PubMed ID: 26235525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Six-dimensional dynamics study of reactive and non reactive scattering of H(2) from Cu(111) using a chemically accurate potential energy surface.
    Díaz C; Olsen RA; Auerbach DJ; Kroes GJ
    Phys Chem Chem Phys; 2010 Jun; 12(24):6499-519. PubMed ID: 20473432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extent of non-Born-Oppenheimer coupling in the reaction of Cl(2P) with para-H2.
    Wang X; Dong W; Xiao C; Che L; Ren Z; Dai D; Wang X; Casavecchia P; Yang X; Jiang B; Xie D; Sun Z; Lee SY; Zhang DH; Werner HJ; Alexander MH
    Science; 2008 Oct; 322(5901):573-6. PubMed ID: 18948537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibrational relaxation of NO on Au(111) via electron-hole pair generation.
    Shenvi N; Roy S; Parandekar P; Tully J
    J Chem Phys; 2006 Oct; 125(15):154703. PubMed ID: 17059279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the validity of the Born-Oppenheimer approximation in the Cl + H2 --> HCl + H reaction.
    Alexander MH; Capecchi G; Werner HJ
    Science; 2002 Apr; 296(5568):715-8. PubMed ID: 11976448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffractive and reactive scattering of H2 from Ru(0001): experimental and theoretical study.
    Nieto P; Farías D; Miranda R; Luppi M; Baerends EJ; Somers MF; van der Niet MJ; Olsen RA; Kroes GJ
    Phys Chem Chem Phys; 2011 May; 13(18):8583-97. PubMed ID: 21487588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of electron-hole pair excitations in the dissociative adsorption of diatomic molecules on metal surfaces.
    Juaristi JI; Alducin M; Muiño RD; Busnengo HF; Salin A
    Phys Rev Lett; 2008 Mar; 100(11):116102. PubMed ID: 18517799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How adiabatic is activated adsorption/associative desorption?
    Luntz AC; Persson M
    J Chem Phys; 2005 Aug; 123(7):074704. PubMed ID: 16229607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of the modified Shepard interpolation method to the determination of the potential energy surface for a molecule-surface reaction: H2 + Pt(111).
    Crespos C; Collins MA; Pijper E; Kroes GJ
    J Chem Phys; 2004 Feb; 120(5):2392-404. PubMed ID: 15268379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemically accurate simulation of a prototypical surface reaction: H2 dissociation on Cu(111).
    Díaz C; Pijper E; Olsen RA; Busnengo HF; Auerbach DJ; Kroes GJ
    Science; 2009 Nov; 326(5954):832-4. PubMed ID: 19892978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiconfiguration time-dependent Hartree method applied to molecular dissociation on surfaces: H2 + Pt(111).
    Crespos C; Meyer HD; Mowrey RC; Kroes GJ
    J Chem Phys; 2006 Feb; 124(7):74706. PubMed ID: 16497069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breakdown of the adiabatic Born-Oppenheimer approximation in graphene.
    Pisana S; Lazzeri M; Casiraghi C; Novoselov KS; Geim AK; Ferrari AC; Mauri F
    Nat Mater; 2007 Mar; 6(3):198-201. PubMed ID: 17293849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electron-hole pair effects in methane dissociative chemisorption on Ni(111).
    Luo X; Jiang B; Juaristi JI; Alducin M; Guo H
    J Chem Phys; 2016 Jul; 145(4):044704. PubMed ID: 27475383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Born-Oppenheimer molecular dynamics.
    Jasper AW; Nangia S; Zhu C; Truhlar DG
    Acc Chem Res; 2006 Feb; 39(2):101-8. PubMed ID: 16489729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frontiers in surface scattering simulations.
    Kroes GJ
    Science; 2008 Aug; 321(5890):794-7. PubMed ID: 18687953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the breakdown of the Born-Oppenheimer approximation in surface chemistry.
    Rahinov I; Cooper R; Matsiev D; Bartels C; Auerbach DJ; Wodtke AM
    Phys Chem Chem Phys; 2011 Jul; 13(28):12680-92. PubMed ID: 21677973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy.
    Kroes GJ
    Phys Chem Chem Phys; 2021 Apr; 23(15):8962-9048. PubMed ID: 33885053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breakdown of the Born-Oppenheimer approximation in the F+ o-D2 -> DF + D reaction.
    Che L; Ren Z; Wang X; Dong W; Dai D; Wang X; Zhang DH; Yang X; Sheng L; Li G; Werner HJ; Lique F; Alexander MH
    Science; 2007 Aug; 317(5841):1061-4. PubMed ID: 17717180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.