These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 1647014)
1. Alternative translocation of protons and halide ions by bacteriorhodopsin. Dér A; Száraz S; Tóth-Boconádi R; Tokaji Z; Keszthelyi L; Stoeckenius W Proc Natl Acad Sci U S A; 1991 Jun; 88(11):4751-5. PubMed ID: 1647014 [TBL] [Abstract][Full Text] [Related]
2. Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin. Imasheva ES; Balashov SP; Ebrey TG; Chen N; Crouch RK; Menick DR Biophys J; 1999 Nov; 77(5):2750-63. PubMed ID: 10545374 [TBL] [Abstract][Full Text] [Related]
3. Photoreactions of bacteriorhodopsin at acid pH. Váró G; Lanyi JK Biophys J; 1989 Dec; 56(6):1143-51. PubMed ID: 2611328 [TBL] [Abstract][Full Text] [Related]
4. Solid-state 13C and 15N NMR study of the low pH forms of bacteriorhodopsin. de Groot HJ; Smith SO; Courtin J; van den Berg E; Winkel C; Lugtenburg J; Griffin RG; Herzfeld J Biochemistry; 1990 Jul; 29(29):6873-83. PubMed ID: 2168744 [TBL] [Abstract][Full Text] [Related]
5. Purple-to-blue transition of bacteriorhodopsin in a neutral lipid environment. Szundi I; Stoeckenius W Biophys J; 1988 Aug; 54(2):227-32. PubMed ID: 3207823 [TBL] [Abstract][Full Text] [Related]
6. Proton transport by halorhodopsin. Váró G; Brown LS; Needleman R; Lanyi JK Biochemistry; 1996 May; 35(21):6604-11. PubMed ID: 8639608 [TBL] [Abstract][Full Text] [Related]
7. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base. Otto H; Marti T; Holz M; Mogi T; Stern LJ; Engel F; Khorana HG; Heyn MP Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1018-22. PubMed ID: 2153966 [TBL] [Abstract][Full Text] [Related]
8. Properties of Asp212----Asn bacteriorhodopsin suggest that Asp212 and Asp85 both participate in a counterion and proton acceptor complex near the Schiff base. Needleman R; Chang M; Ni B; Váró G; Fornés J; White SH; Lanyi JK J Biol Chem; 1991 Jun; 266(18):11478-84. PubMed ID: 1646807 [TBL] [Abstract][Full Text] [Related]
9. Anion-protein interactions during halorhodopsin pumping: halide binding at the protonated Schiff base. Walter TJ; Braiman MS Biochemistry; 1994 Feb; 33(7):1724-33. PubMed ID: 8110775 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of base-catalyzed Schiff base deprotonation in halorhodopsin. Lanyi JK Biochemistry; 1986 Oct; 25(21):6706-11. PubMed ID: 3790553 [TBL] [Abstract][Full Text] [Related]
11. Protonation state of Asp (Glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants Arg-82----Ala and Asp-85----Glu: the blue form is inactive in proton translocation. Subramaniam S; Marti T; Khorana HG Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1013-7. PubMed ID: 1967832 [TBL] [Abstract][Full Text] [Related]
12. Anion binding to the Schiff base of the bacteriorhodopsin mutants Asp-85----Asn/Asp-212----Asn and Arg-82----Gln/Asp-85----Asn/Asp-212----Asn. Marti T; Otto H; Rösselet SJ; Heyn MP; Khorana HG J Biol Chem; 1992 Aug; 267(24):16922-7. PubMed ID: 1512233 [TBL] [Abstract][Full Text] [Related]
13. Halide binding by the purified halorhodopsin chromoprotein. I. Effects on the chromophore. Steiner M; Oesterhelt D; Ariki M; Lanyi JK J Biol Chem; 1984 Feb; 259(4):2179-84. PubMed ID: 6698961 [TBL] [Abstract][Full Text] [Related]
14. Protein-chromophore interactions in bacteriorhodopsin: the effects of a change in surface potential. Swords NA; Wallace BA Biochim Biophys Acta; 1991 Dec; 1070(2):313-20. PubMed ID: 1764449 [TBL] [Abstract][Full Text] [Related]
15. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site. Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422 [TBL] [Abstract][Full Text] [Related]
16. Lowering the intrinsic pKa of the chromophore's Schiff base can restore its light-induced deprotonation in the inactive Tyr-57-->Asn mutant of bacteriorhodopsin. Govindjee R; Balashov S; Ebrey T; Oesterhelt D; Steinberg G; Sheves M J Biol Chem; 1994 May; 269(20):14353-4. PubMed ID: 8182036 [TBL] [Abstract][Full Text] [Related]
17. Interaction of proton and chloride transfer pathways in recombinant bacteriorhodopsin with chloride transport activity: implications for the chloride translocation mechanism. Brown LS; Needleman R; Lanyi JK Biochemistry; 1996 Dec; 35(50):16048-54. PubMed ID: 8973174 [TBL] [Abstract][Full Text] [Related]
18. Electrooptical studies on proton-binding and -release of bacteriorhodopsin. Tsuji K; Hess B Eur Biophys J; 1990; 18(1):63-9. PubMed ID: 2155114 [TBL] [Abstract][Full Text] [Related]
19. Catalysis of the retinal subpicosecond photoisomerization process in acid purple bacteriorhodopsin and some bacteriorhodopsin mutants by chloride ions. Logunov SL; el-Sayed MA; Lanyi JK Biophys J; 1996 Sep; 71(3):1545-53. PubMed ID: 8874028 [TBL] [Abstract][Full Text] [Related]
20. Chloride and proton transport in bacteriorhodopsin mutant D85T: different modes of ion translocation in a retinal protein. Tittor J; Haupts U; Haupts C; Oesterhelt D; Becker A; Bamberg E J Mol Biol; 1997 Aug; 271(3):405-16. PubMed ID: 9268668 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]