BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 16470383)

  • 1. Enhanced gene targeting frequency in ku70 and ku80 disruption mutants of Aspergillus sojae and Aspergillus oryzae.
    Takahashi T; Masuda T; Koyama Y
    Mol Genet Genomics; 2006 May; 275(5):460-70. PubMed ID: 16470383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and analysis of Ku70 and Ku80 homologs in the koji molds Aspergillus sojae and Aspergillus oryzae.
    Takahashi T; Masuda T; Koyama Y
    Biosci Biotechnol Biochem; 2006 Jan; 70(1):135-43. PubMed ID: 16428831
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ku80 gene is related to non-homologous end-joining and genome stability in Aspergillus niger.
    Zhang J; Mao Z; Xue W; Li Y; Tang G; Wang A; Zhang Y; Wang H
    Curr Microbiol; 2011 Apr; 62(4):1342-6. PubMed ID: 21225265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog.
    Pöggeler S; Kück U
    Gene; 2006 Aug; 378():1-10. PubMed ID: 16814491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining.
    Ninomiya Y; Suzuki K; Ishii C; Inoue H
    Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12248-53. PubMed ID: 15299145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deletion of individual Ku subunits in mice causes an NHEJ-independent phenotype potentially by altering apurinic/apyrimidinic site repair.
    Choi YJ; Li H; Son MY; Wang XH; Fornsaglio JL; Sobol RW; Lee M; Vijg J; Imholz S; Dollé ME; van Steeg H; Reiling E; Hasty P
    PLoS One; 2014; 9(1):e86358. PubMed ID: 24466051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene targeting in Aspergillus fumigatus by homologous recombination is facilitated in a nonhomologous end- joining-deficient genetic background.
    Krappmann S; Sasse C; Braus GH
    Eukaryot Cell; 2006 Jan; 5(1):212-5. PubMed ID: 16400185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Ku70-binding site of Ku80 is required for the stabilization of Ku70 in the cytoplasm, for the nuclear translocation of Ku80, and for Ku80-dependent DNA repair.
    Koike M; Koike A
    Exp Cell Res; 2005 May; 305(2):266-76. PubMed ID: 15817152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. KARP-1 works as a heterodimer with Ku70, but the function of KARP-1 cannot perfectly replace that of Ku80 in DSB repair.
    Koike M; Yutoku Y; Koike A
    Exp Cell Res; 2011 Oct; 317(16):2267-75. PubMed ID: 21756904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deleting Ku70 is milder than deleting Ku80 in p53-mutant mice and cells.
    Li H; Choi YJ; Hanes MA; Marple T; Vogel H; Hasty P
    Oncogene; 2009 Apr; 28(16):1875-8. PubMed ID: 19330025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ku70 and ku80 null mutants improve the gene targeting frequency in Monascus ruber M7.
    He Y; Liu Q; Shao Y; Chen F
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4965-76. PubMed ID: 23546425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinicopathological significance of KU70/KU80, a key DNA damage repair protein in breast cancer.
    Alshareeda AT; Negm OH; Albarakati N; Green AR; Nolan C; Sultana R; Madhusudan S; Benhasouna A; Tighe P; Ellis IO; Rakha EA
    Breast Cancer Res Treat; 2013 Jun; 139(2):301-10. PubMed ID: 23624778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A highly efficient gene-targeting system for Aspergillus parasiticus.
    Chang PK
    Lett Appl Microbiol; 2008 May; 46(5):587-92. PubMed ID: 18346134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of Ku70, Ku80, or both causes early aging without substantially increased cancer.
    Li H; Vogel H; Holcomb VB; Gu Y; Hasty P
    Mol Cell Biol; 2007 Dec; 27(23):8205-14. PubMed ID: 17875923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient gene replacements in Toxoplasma gondii strains deficient for nonhomologous end joining.
    Fox BA; Ristuccia JG; Gigley JP; Bzik DJ
    Eukaryot Cell; 2009 Apr; 8(4):520-9. PubMed ID: 19218423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accumulation of Ku80 proteins at DNA double-strand breaks in living cells.
    Koike M; Koike A
    Exp Cell Res; 2008 Mar; 314(5):1061-70. PubMed ID: 18164703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A versatile and efficient gene-targeting system for Aspergillus nidulans.
    Nayak T; Szewczyk E; Oakley CE; Osmani A; Ukil L; Murray SL; Hynes MJ; Osmani SA; Oakley BR
    Genetics; 2006 Mar; 172(3):1557-66. PubMed ID: 16387870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient gene targeting in Aspergillus oryzae industrial strains under ligD mutation introduced by genome editing: Strain-specific differences in the effects of deleting EcdR, the negative regulator of sclerotia formation.
    Nakamura H; Katayama T; Okabe T; Iwashita K; Fujii W; Kitamoto K; Maruyama JI
    J Gen Appl Microbiol; 2017 Jul; 63(3):172-178. PubMed ID: 28484116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and toxigenic potential of the industrially important fungi, Aspergillus oryzae and Aspergillus sojae.
    Jørgensen TR
    J Food Prot; 2007 Dec; 70(12):2916-34. PubMed ID: 18095455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted gene disruption in Koji mold Aspergillus oryzae.
    Maruyama J; Kitamoto K
    Methods Mol Biol; 2011; 765():447-56. PubMed ID: 21815109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.