These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 16470399)

  • 1. Square-lashing technique in segmental spinal instrumentation: a biomechanical study.
    Arlet V; Draxinger K; Beckman L; Steffen T
    Eur Spine J; 2006 Jul; 15(7):1153-8. PubMed ID: 16470399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preventing distal pullout of posterior spine instrumentation in thoracic hyperkyphosis: a biomechanical analysis.
    Sun E; Alkalay R; Vader D; Snyder BD
    J Spinal Disord Tech; 2009 Jun; 22(4):270-7. PubMed ID: 19494747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of sublaminar cables to replace Luque wires.
    Songer MN; Spencer DL; Meyer PR; Jayaraman G
    Spine (Phila Pa 1976); 1991 Aug; 16(8 Suppl):S418-21. PubMed ID: 1785098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A biomechanical study of 3 different types of sublaminar wire used for constructs in the thoracic spine.
    Murakami H; Yamazaki K; Attallah-Wasif ES; Tsai KJ; Shimamura T; Hutton WC
    J Spinal Disord Tech; 2006 Aug; 19(6):442-6. PubMed ID: 16891981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative mechanical properties of spinal cable and wire fixation systems.
    Dickman CA; Papadopoulos SM; Crawford NR; Brantley AG; Gealer RL
    Spine (Phila Pa 1976); 1997 Mar; 22(6):596-604. PubMed ID: 9089931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biomechanical analysis of sublaminar wires and cables using luque segmental spinal instrumentation.
    Parsons JR; Chokshi BV; Lee CK; Gundlapalli RV; Stamer D
    Spine (Phila Pa 1976); 1997 Feb; 22(3):267-73. PubMed ID: 9051888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical evaluation of a new fixation device for the thoracic spine.
    Hongo M; Ilharreborde B; Gay RE; Zhao C; Zhao KD; Berglund LJ; Zobitz M; An KN
    Eur Spine J; 2009 Aug; 18(8):1213-9. PubMed ID: 19404687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro biomechanical comparison of multistrand cables with conventional cervical stabilization.
    Weis JC; Cunningham BW; Kanayama M; Parker L; McAfee PC
    Spine (Phila Pa 1976); 1996 Sep; 21(18):2108-14. PubMed ID: 8893435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of pullout strength and failure mechanism of posterior instrumentation in normal and osteopenic thoracic vertebrae.
    Paxinos O; Tsitsopoulos PP; Zindrick MR; Voronov LI; Lorenz MA; Havey RM; Patwardhan AG
    J Neurosurg Spine; 2010 Oct; 13(4):469-76. PubMed ID: 20887144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New rod-plate anterior instrumentation for thoracolumbar/lumbar scoliosis: biomechanical evaluation compared with dual-rod and single-rod with structural interbody support.
    Zhang H; Johnston CE; Pierce WA; Ashman RB; Bronson DG; Haideri NF
    Spine (Phila Pa 1976); 2006 Dec; 31(25):E934-40. PubMed ID: 17139209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical comparison of different anchors (foundations) for the pediatric dual growing rod technique.
    Mahar AT; Bagheri R; Oka R; Kostial P; Akbarnia BA
    Spine J; 2008; 8(6):933-9. PubMed ID: 18082463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomechanical analysis of sublaminar and subtransverse process fixation using metal wires and polyethylene cables.
    Fujita M; Diab M; Xu Z; Puttlitz CM
    Spine (Phila Pa 1976); 2006 Sep; 31(19):2202-8. PubMed ID: 16946654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between 4.0-mm stainless steel and 4.75-mm titanium alloy single-rod spinal instrumentation for anterior thoracoscopic scoliosis surgery.
    Yoon SH; Ugrinow VL; Upasani VV; Pawelek JB; Newton PO
    Spine (Phila Pa 1976); 2008 Sep; 33(20):2173-8. PubMed ID: 18794758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of the mechanical stability of scoliosis constructs using variable numbers of sublaminar wires.
    Gadgil A; Ahmed EB; Rahmatalla A; Dove J; Maffulli N
    Eur Spine J; 2002 Aug; 11(4):321-6. PubMed ID: 12193992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pedicle screw augmentation with polyethylene tape: a biomechanical study in the osteoporotic thoracolumbar spine.
    Hamasaki T; Tanaka N; Kim J; Okada M; Ochi M; Hutton WC
    J Spinal Disord Tech; 2010 Apr; 23(2):127-32. PubMed ID: 20051920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt chromium sublaminar wires for spinal deformity surgery.
    Cluck MW; Skaggs DL
    Spine (Phila Pa 1976); 2006 Sep; 31(19):2209-12. PubMed ID: 16946655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and preclinical testing of a new tension-band device for the spine: the Loop system.
    Garner MD; Wolfe SJ; Kuslich SD
    Eur Spine J; 2002 Oct; 11 Suppl 2(Suppl 2):S186-91. PubMed ID: 12384743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel dual-rod screw for thoracoscopic anterior instrumentation: biomechanical evaluation compared with single-rod and double-screw/double-rod anterior constructs.
    Zhang H; Sucato DJ; Pierce WA; Ross D
    Spine (Phila Pa 1976); 2009 Mar; 34(5):E183-8. PubMed ID: 19247158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical analysis of 4 types of pedicle screws for scoliotic spine instrumentation.
    Wang X; Aubin CE; Crandall D; Parent S; Labelle H
    Spine (Phila Pa 1976); 2012 Jun; 37(14):E823-35. PubMed ID: 22310096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical and clinical evaluation of a novel technique for surgical repair of spondylolysis in adolescents.
    Ulibarri JA; Anderson PA; Escarcega T; Mann D; Noonan KJ
    Spine (Phila Pa 1976); 2006 Aug; 31(18):2067-72. PubMed ID: 16915090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.