These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 1647043)

  • 21. Genetic engineering and properties of novel herpes simplex viruses for use as potential vaccines and as vectors of foreign genes.
    Meignier B; Roizman B
    Adv Exp Med Biol; 1989; 257():187-92. PubMed ID: 2559609
    [No Abstract]   [Full Text] [Related]  

  • 22. Active and passive immune responses to transmissible gastroenteritis virus (TGEV) in swine inoculated with recombinant baculovirus-expressed TGEV spike glycoprotein vaccines.
    Shoup DI; Jackwood DJ; Saif LJ
    Am J Vet Res; 1997 Mar; 58(3):242-50. PubMed ID: 9055968
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetically modified, live attenuated dengue virus type 3 vaccine candidates.
    Blaney JE; Hanson CT; Firestone CY; Hanley KA; Murphy BR; Whitehead SS
    Am J Trop Med Hyg; 2004 Dec; 71(6):811-21. PubMed ID: 15642976
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Contemporary vaccinology--scientific and practical aspects].
    Piotrowska-Jastrzebska J; Mikołuć B; Motkowski R
    Pol Merkur Lekarski; 2002 Jun; 12(72):526-9. PubMed ID: 12362676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Herpes simplex virus 1 recombinant virions exhibiting the amino terminal fragment of urokinase-type plasminogen activator can enter cells via the cognate receptor.
    Kamiyama H; Zhou G; Roizman B
    Gene Ther; 2006 Apr; 13(7):621-9. PubMed ID: 16292350
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protective immune responses induced by the immunization of mice with a recombinant bacteriophage displaying an epitope of the human respiratory syncytial virus.
    Bastien N; Trudel M; Simard C
    Virology; 1997 Jul; 234(1):118-22. PubMed ID: 9234952
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a live attenuated antigenic marker classical swine fever vaccine.
    Holinka LG; Fernandez-Sainz I; O'Donnell V; Prarat MV; Gladue DP; Lu Z; Risatti GR; Borca MV
    Virology; 2009 Feb; 384(1):106-13. PubMed ID: 19046591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction and evaluation of genetically engineered replication-defective porcine reproductive and respiratory syndrome virus vaccine candidates.
    Welch SK; Jolie R; Pearce DS; Koertje WD; Fuog E; Shields SL; Yoo D; Calvert JG
    Vet Immunol Immunopathol; 2004 Dec; 102(3):277-90. PubMed ID: 15507311
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure and expression in baculovirus of the Mokola virus glycoprotein: an efficient recombinant vaccine.
    Tordo N; Bourhy H; Sather S; Ollo R
    Virology; 1993 May; 194(1):59-69. PubMed ID: 8480429
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The potential of retro-inverso peptides as synthetic vaccines.
    Van Regenmortel MH; Guichard G; Benkirane N; Briand JP; Muller S; Brown F
    Dev Biol Stand; 1998; 92():139-43. PubMed ID: 9554267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Studies on naturally occurring infectious bursal disease viruses suggest that a single amino acid substitution at position 253 in VP2 increases pathogenicity.
    Jackwood DJ; Sreedevi B; LeFever LJ; Sommer-Wagner SE
    Virology; 2008 Jul; 377(1):110-6. PubMed ID: 18502466
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Molecular mechanisms of proteolytic processing of viral proteins and the problem of antiviral chemotherapy and vaccine design].
    Zhirnov OP
    Mol Biol (Mosk); 1988; 22(3):581-600. PubMed ID: 3054491
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A DNA vaccine expressing the E2 protein of classical swine fever virus elicits T cell responses that can prime for rapid antibody production and confer total protection upon viral challenge.
    Ganges L; Barrera M; Núñez JI; Blanco I; Frias MT; Rodríguez F; Sobrino F
    Vaccine; 2005 May; 23(28):3741-52. PubMed ID: 15882536
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An approach to a FMD vaccine based on genetic engineered attenuated pseudorabies virus: one experiment using VP1 gene alone generates an antibody responds on FMD and pseudorabies in swine.
    Qian P; Li XM; Jin ML; Peng GQ; Chen HC
    Vaccine; 2004 Jun; 22(17-18):2129-36. PubMed ID: 15149769
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Immunological control of virus-associated tumors in man: a perspective.
    Levine PH
    Cancer Res; 1976 Feb; 36(2 pt 2):867-9. PubMed ID: 175948
    [No Abstract]   [Full Text] [Related]  

  • 36. Genetically Engineered Vaccines: Prospects for Oral Disease Prevention. Proceedings of a workshop. Bethesda, Maryland, November 6-8, 1991.
    Adv Exp Med Biol; 1992; 327():1-326. PubMed ID: 1363503
    [No Abstract]   [Full Text] [Related]  

  • 37. Biotechnology and veterinary science: production of veterinary vaccines.
    Wray C; Woodward MJ
    Rev Sci Tech; 1990 Sep; 9(3):779-94. PubMed ID: 2132704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Synthesis of vaccine].
    Nerome K
    Tanpakushitsu Kakusan Koso; 1992 Feb; 37(3 Suppl):440-64. PubMed ID: 1549722
    [No Abstract]   [Full Text] [Related]  

  • 39. Genetically engineered vaccines.
    Hughes JA; Brazeau GA
    Am Pharm; 1995 Dec; NS35(12):9-10. PubMed ID: 8546075
    [No Abstract]   [Full Text] [Related]  

  • 40. Genetically engineered pigs.
    Cooper DK; Koren E; Oriol R
    Lancet; 1993 Sep; 342(8872):682-3. PubMed ID: 8103167
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.