BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 16470615)

  • 1. The role of the forkhead transcription factor, Foxc1, in the development of the mouse lacrimal gland.
    Mattiske D; Sommer P; Kidson SH; Hogan BL
    Dev Dyn; 2006 Apr; 235(4):1074-80. PubMed ID: 16470615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bmp7 regulates branching morphogenesis of the lacrimal gland by promoting mesenchymal proliferation and condensation.
    Dean C; Ito M; Makarenkova HP; Faber SC; Lang RA
    Development; 2004 Sep; 131(17):4155-65. PubMed ID: 15280212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FGF10 is an inducer and Pax6 a competence factor for lacrimal gland development.
    Makarenkova HP; Ito M; Govindarajan V; Faber SC; Sun L; McMahon G; Overbeek PA; Lang RA
    Development; 2000 Jun; 127(12):2563-72. PubMed ID: 10821755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BMP7 inhibits branching morphogenesis in the prostate gland and interferes with Notch signaling.
    Grishina IB; Kim SY; Ferrara C; Makarenkova HP; Walden PD
    Dev Biol; 2005 Dec; 288(2):334-47. PubMed ID: 16324690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Canonical Wnt signaling negatively regulates branching morphogenesis of the lung and lacrimal gland.
    Dean CH; Miller LA; Smith AN; Dufort D; Lang RA; Niswander LA
    Dev Biol; 2005 Oct; 286(1):270-86. PubMed ID: 16126193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bone morphogenetic protein regulation of forkhead/winged helix transcription factor Foxc2 (Mfh1) in a murine mesodermal cell line C1 and in skeletal precursor cells.
    Nifuji A; Miura N; Kato N; Kellermann O; Noda M
    J Bone Miner Res; 2001 Oct; 16(10):1765-71. PubMed ID: 11585339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF signaling activates a Sox9-Sox10 pathway for the formation and branching morphogenesis of mouse ocular glands.
    Chen Z; Huang J; Liu Y; Dattilo LK; Huh SH; Ornitz D; Beebe DC
    Development; 2014 Jul; 141(13):2691-701. PubMed ID: 24924191
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haploinsufficiency of the transcription factors FOXC1 and FOXC2 results in aberrant ocular development.
    Smith RS; Zabaleta A; Kume T; Savinova OV; Kidson SH; Martin JE; Nishimura DY; Alward WL; Hogan BL; John SW
    Hum Mol Genet; 2000 Apr; 9(7):1021-32. PubMed ID: 10767326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Homozygous Mutation in FOXC1 Causes Axenfeld Rieger Syndrome with Congenital Glaucoma.
    Micheal S; Siddiqui SN; Zafar SN; Villanueva-Mendoza C; Cortés-González V; Khan MI; den Hollander AI
    PLoS One; 2016; 11(7):e0160016. PubMed ID: 27463523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foxc1 and Foxc2 in the Neural Crest Are Required for Ocular Anterior Segment Development.
    Seo S; Chen L; Liu W; Zhao D; Schultz KM; Sasman A; Liu T; Zhang HF; Gage PJ; Kume T
    Invest Ophthalmol Vis Sci; 2017 Mar; 58(3):1368-1377. PubMed ID: 28253399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional interactions between FOXC1 and PITX2 underlie the sensitivity to FOXC1 gene dose in Axenfeld-Rieger syndrome and anterior segment dysgenesis.
    Berry FB; Lines MA; Oas JM; Footz T; Underhill DA; Gage PJ; Walter MA
    Hum Mol Genet; 2006 Mar; 15(6):905-19. PubMed ID: 16449236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyses of a novel L130F missense mutation in FOXC1.
    Ito YA; Footz TK; Murphy TC; Courtens W; Walter MA
    Arch Ophthalmol; 2007 Jan; 125(1):128-35. PubMed ID: 17210863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Tgf beta1i4 as a downstream target of Foxc1.
    Sommer P; Napier HR; Hogan BL; Kidson SH
    Dev Growth Differ; 2006 Jun; 48(5):297-308. PubMed ID: 16759280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progression of calvarial bone development requires Foxc1 regulation of Msx2 and Alx4.
    Rice R; Rice DP; Olsen BR; Thesleff I
    Dev Biol; 2003 Oct; 262(1):75-87. PubMed ID: 14512019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Axenfeld-Rieger Syndrome Gene
    Chrystal PW; French CR; Jean F; Havrylov S; van Baarle S; Peturson AM; Xu P; Crump JG; Pilgrim DB; Lehmann OJ; Waskiewicz AJ
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33530637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axenfeld-Rieger syndrome-associated mutants of the transcription factor FOXC1 abnormally regulate
    Zhang Q; Liang D; Yue Y; He L; Li N; Jiang D; Hu P; Zhao Q
    J Biol Chem; 2020 Aug; 295(33):11902-11913. PubMed ID: 32631953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Foxc1 dependent mesenchymal signalling drives embryonic cerebellar growth.
    Haldipur P; Gillies GS; Janson OK; Chizhikov VV; Mithal DS; Miller RJ; Millen KJ
    Elife; 2014 Dec; 3():. PubMed ID: 25513817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genotype-phenotype correlations in Axenfeld-Rieger malformation and glaucoma patients with FOXC1 and PITX2 mutations.
    Strungaru MH; Dinu I; Walter MA
    Invest Ophthalmol Vis Sci; 2007 Jan; 48(1):228-37. PubMed ID: 17197537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signals from the lens and Foxc1 regulate the expression of key genes during the onset of corneal endothelial development.
    Silla ZT; Naidoo J; Kidson SH; Sommer P
    Exp Cell Res; 2014 Apr; 322(2):381-8. PubMed ID: 24472616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Barx2 and Fgf10 regulate ocular glands branching morphogenesis by controlling extracellular matrix remodeling.
    Tsau C; Ito M; Gromova A; Hoffman MP; Meech R; Makarenkova HP
    Development; 2011 Aug; 138(15):3307-17. PubMed ID: 21750040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.