These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 16470849)
1. Novel conserved hydrolase domain in the CLCA family of alleged calcium-activated chloride channels. Pawłowski K; Lepistö M; Meinander N; Sivars U; Varga M; Wieslander E Proteins; 2006 May; 63(3):424-39. PubMed ID: 16470849 [TBL] [Abstract][Full Text] [Related]
2. Mapping functional domains of chloride intracellular channel (CLIC) proteins in vivo. Berry KL; Hobert O J Mol Biol; 2006 Jun; 359(5):1316-33. PubMed ID: 16737711 [TBL] [Abstract][Full Text] [Related]
3. The structure of the cytoplasmic domain of the chloride channel ClC-Ka reveals a conserved interaction interface. Markovic S; Dutzler R Structure; 2007 Jun; 15(6):715-25. PubMed ID: 17562318 [TBL] [Abstract][Full Text] [Related]
4. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
5. Structure and function of CLCA proteins. Loewen ME; Forsyth GW Physiol Rev; 2005 Jul; 85(3):1061-92. PubMed ID: 15987802 [TBL] [Abstract][Full Text] [Related]
6. Structural modeling identified the tRNA-binding domain of Utp8p, an essential nucleolar component of the nuclear tRNA export machinery of Saccharomyces cerevisiae. McGuire AT; Keates RA; Cook S; Mangroo D Biochem Cell Biol; 2009 Apr; 87(2):431-43. PubMed ID: 19370060 [TBL] [Abstract][Full Text] [Related]
7. N-glycosylation analysis of the human Tweety family of putative chloride ion channels supports a penta-spanning membrane arrangement: impact of N-glycosylation on cellular processing of Tweety homologue 2 (TTYH2). He Y; Ramsay AJ; Hunt ML; Whitbread AK; Myers SA; Hooper JD Biochem J; 2008 May; 412(1):45-55. PubMed ID: 18260827 [TBL] [Abstract][Full Text] [Related]
8. Investigation of metal ion binding in phosphonoacetaldehyde hydrolase identifies sequence markers for metal-activated enzymes of the HAD enzyme superfamily. Zhang G; Morais MC; Dai J; Zhang W; Dunaway-Mariano D; Allen KN Biochemistry; 2004 May; 43(17):4990-7. PubMed ID: 15109258 [TBL] [Abstract][Full Text] [Related]
9. A putative novel alpha/beta hydrolase ORFan family in Bacillus. Siew N; Saini HK; Fischer D FEBS Lett; 2005 Jun; 579(14):3175-82. PubMed ID: 15922334 [TBL] [Abstract][Full Text] [Related]
10. Structural insight into substrate binding and catalysis of a novel 2-keto-3-deoxy-D-arabinonate dehydratase illustrates common mechanistic features of the FAH superfamily. Brouns SJ; Barends TR; Worm P; Akerboom J; Turnbull AP; Salmon L; van der Oost J J Mol Biol; 2008 May; 379(2):357-71. PubMed ID: 18448118 [TBL] [Abstract][Full Text] [Related]
11. Structure and action of a C-C bond cleaving alpha/beta-hydrolase involved in nicotine degradation. Schleberger C; Sachelaru P; Brandsch R; Schulz GE J Mol Biol; 2007 Mar; 367(2):409-18. PubMed ID: 17275835 [TBL] [Abstract][Full Text] [Related]
12. Structure of thiocyanate hydrolase: a new nitrile hydratase family protein with a novel five-coordinate cobalt(III) center. Arakawa T; Kawano Y; Kataoka S; Katayama Y; Kamiya N; Yohda M; Odaka M J Mol Biol; 2007 Mar; 366(5):1497-509. PubMed ID: 17222425 [TBL] [Abstract][Full Text] [Related]
13. [The active site of human glucocerebrosidase: structural predictions and experimental validations]. Fabrega S; Durand P; Mornon JP; Lehn P J Soc Biol; 2002; 196(2):151-60. PubMed ID: 12360744 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of the membrane-spanning domain of ClC-2. Ramjeesingh M; Li C; She YM; Bear CE Biochem J; 2006 Jun; 396(3):449-60. PubMed ID: 16526942 [TBL] [Abstract][Full Text] [Related]
15. Structural requirements for catalysis, expression, and dimerization in the CD26/DPIV gene family. Ajami K; Abbott CA; Obradovic M; Gysbers V; Kähne T; McCaughan GW; Gorrell MD Biochemistry; 2003 Jan; 42(3):694-701. PubMed ID: 12534281 [TBL] [Abstract][Full Text] [Related]
16. Crystal structure of the soluble form of the redox-regulated chloride ion channel protein CLIC4. Littler DR; Assaad NN; Harrop SJ; Brown LJ; Pankhurst GJ; Luciani P; Aguilar MI; Mazzanti M; Berryman MA; Breit SN; Curmi PM FEBS J; 2005 Oct; 272(19):4996-5007. PubMed ID: 16176272 [TBL] [Abstract][Full Text] [Related]
17. Novel alpha-KTx sites in the BK channel and comparative sequence analysis reveal distinguishing features of the BK and KV channel outer pore. Giangiacomo KM; Becker J; Garsky C; Schmalhofer W; Garcia ML; Mullmann TJ Cell Biochem Biophys; 2008; 52(1):47-58. PubMed ID: 18815746 [TBL] [Abstract][Full Text] [Related]
18. Novel transmembrane lipases of alpha/beta hydrolase fold. Lazniewski M; Steczkiewicz K; Knizewski L; Wawer I; Ginalski K FEBS Lett; 2011 Mar; 585(6):870-4. PubMed ID: 21333648 [TBL] [Abstract][Full Text] [Related]
19. Overexpression, purification, and characterization of ProQ, a posttranslational regulator for osmoregulatory transporter ProP of Escherichia coli. Smith MN; Crane RA; Keates RA; Wood JM Biochemistry; 2004 Oct; 43(41):12979-89. PubMed ID: 15476391 [TBL] [Abstract][Full Text] [Related]
20. The cytoplasmic domain of the chloride channel ClC-0: structural and dynamic characterization of flexible regions. Alioth S; Meyer S; Dutzler R; Pervushin K J Mol Biol; 2007 Jun; 369(5):1163-9. PubMed ID: 17482645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]