BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 16470880)

  • 1. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.
    Liu ZL; Ma M; Song M
    Mol Genet Genomics; 2009 Sep; 282(3):233-44. PubMed ID: 19517136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flocculation causes inhibitor tolerance in Saccharomyces cerevisiae for second-generation bioethanol production.
    Westman JO; Mapelli V; Taherzadeh MJ; Franzén CJ
    Appl Environ Microbiol; 2014 Nov; 80(22):6908-18. PubMed ID: 25172866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae.
    Ma M; Liu ZL
    BMC Genomics; 2010 Nov; 11():660. PubMed ID: 21106074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass.
    Dolpatcha S; Phong HX; Thanonkeo S; Klanrit P; Yamada M; Thanonkeo P
    Sci Rep; 2023 Nov; 13(1):21000. PubMed ID: 38017261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening of Non- Saccharomyces cerevisiae Strains for Tolerance to Formic Acid in Bioethanol Fermentation.
    Oshoma CE; Greetham D; Louis EJ; Smart KA; Phister TG; Powell C; Du C
    PLoS One; 2015; 10(8):e0135626. PubMed ID: 26284784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of wood-inhabiting yeasts of the Faroe Islands in the presence of spent sulphite liquor.
    Rönnander J; Wright SAI
    Antonie Van Leeuwenhoek; 2021 Jun; 114(6):649-666. PubMed ID: 33851316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of lignocellulose-derived inhibitors on growth of and ethanol production by growth-arrested Corynebacterium glutamicum R.
    Sakai S; Tsuchida Y; Nakamoto H; Okino S; Ichihashi O; Kawaguchi H; Watanabe T; Inui M; Yukawa H
    Appl Environ Microbiol; 2007 Apr; 73(7):2349-53. PubMed ID: 17277203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of ion homeostasis in adaptation and tolerance to acetic acid stress in yeasts.
    Antunes M; Sá-Correia I
    FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38658183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth inhibition of S. cerevisiae, B. subtilis, and E. coli by lignocellulosic and fermentation products.
    Pereira JP; Verheijen PJ; Straathof AJ
    Appl Microbiol Biotechnol; 2016 Nov; 100(21):9069-9080. PubMed ID: 27262569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae.
    Narayanan V; Sànchez I Nogué V; van Niel EWJ; Gorwa-Grauslund MF
    AMB Express; 2016 Dec; 6(1):59. PubMed ID: 27566648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel AST2 mutation generated upon whole-genome transformation of Saccharomyces cerevisiae confers high tolerance to 5-Hydroxymethylfurfural (HMF) and other inhibitors.
    Vanmarcke G; Deparis Q; Vanthienen W; Peetermans A; Foulquié-Moreno MR; Thevelein JM
    PLoS Genet; 2021 Oct; 17(10):e1009826. PubMed ID: 34624020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of Lignocellulose for Bioethanol Production, Applied in Bio-Polyethylene Terephthalate.
    Damayanti D; Supriyadi D; Amelia D; Saputri DR; Devi YLL; Auriyani WA; Wu HS
    Polymers (Basel); 2021 Aug; 13(17):. PubMed ID: 34502925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress modulation as a means to improve yeasts for lignocellulose bioconversion.
    Brandt BA; Jansen T; Volschenk H; Görgens JF; Van Zyl WH; Den Haan R
    Appl Microbiol Biotechnol; 2021 Jun; 105(12):4899-4918. PubMed ID: 34097119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Balanced Xylan Acetylation is the Key Regulator of Plant Growth and Development, and Cell Wall Structure and for Industrial Utilization.
    Qaseem MF; Wu AM
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repeated cultures of
    Palakawong Na Ayutthaya P; Charoenrat T; Krusong W; Pornpukdeewattana S
    3 Biotech; 2019 Mar; 9(3):76. PubMed ID: 30800587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome profiling of Brassica napus stem sections in relation to differences in lignin content.
    Hossain Z; Pillai BV; Gruber MY; Yu M; Amyot L; Hannoufa A
    BMC Genomics; 2018 Apr; 19(1):255. PubMed ID: 29661131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production.
    Chamnipa N; Thanonkeo S; Klanrit P; Thanonkeo P
    Braz J Microbiol; 2018; 49(2):378-391. PubMed ID: 29154013
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Aulitto M; Fusco S; Bartolucci S; Franzén CJ; Contursi P
    Biotechnol Biofuels; 2017; 10():210. PubMed ID: 28904563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural acetylation impacts carbohydrate recovery during deconstruction of
    Johnson AM; Kim H; Ralph J; Mansfield SD
    Biotechnol Biofuels; 2017; 10():48. PubMed ID: 28250816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.