BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16471037)

  • 1. Selection of cell lines with enhanced invasive phenotype from xenografts of the human prostate cancer cell line WPE1-NB26.
    Rivette AS; Tokar EJ; Williams DE; Mackenzie CD; Ablin RJ; Webber MM
    J Exp Ther Oncol; 2005; 5(2):111-23. PubMed ID: 16471037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human cell lines as an in vitro/in vivo model for prostate carcinogenesis and progression.
    Webber MM; Quader ST; Kleinman HK; Bello-DeOcampo D; Storto PD; Bice G; DeMendonca-Calaca W; Williams DE
    Prostate; 2001 Apr; 47(1):1-13. PubMed ID: 11304724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the chemopreventive potential of retinoids using a novel in vitro human prostate carcinogenesis model.
    Quader ST; Bello-DeOcampo D; Williams DE; Kleinman HK; Webber MM
    Mutat Res; 2001 Sep; 496(1-2):153-61. PubMed ID: 11551491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of alpha 6 beta 1 integrin and EGF in normal and malignant acinar morphogenesis of human prostatic epithelial cells.
    Bello-DeOcampo D; Kleinman HK; Webber MM
    Mutat Res; 2001 Sep; 480-481():209-17. PubMed ID: 11506815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Matrix metalloproteinases participate in osteosarcoma invasion.
    Bjørnland K; Flatmark K; Pettersen S; Aaasen AO; Fodstad O; Maelandsmo GM
    J Surg Res; 2005 Aug; 127(2):151-6. PubMed ID: 16083752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stemness markers characterize IGR-CaP1, a new cell line derived from primary epithelial prostate cancer.
    Chauchereau A; Al Nakouzi N; Gaudin C; Le Moulec S; Compagno D; Auger N; Bénard J; Opolon P; Rozet F; Validire P; Fromont G; Fizazi K
    Exp Cell Res; 2011 Feb; 317(3):262-75. PubMed ID: 20974126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introduction of insulin-like growth factor binding protein-2 gene into human bladder cancer cells enhances their metastatic potential.
    Miyake H; Hara I; Yamanaka K; Muramaki M; Gleave M; Eto H
    Oncol Rep; 2005 Feb; 13(2):341-5. PubMed ID: 15643522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Penta-O-galloyl-beta-D-glucose suppresses prostate cancer bone metastasis by transcriptionally repressing EGF-induced MMP-9 expression.
    Kuo PT; Lin TP; Liu LC; Huang CH; Lin JK; Kao JY; Way TD
    J Agric Food Chem; 2009 Apr; 57(8):3331-9. PubMed ID: 19320436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Smad3 is overexpressed in advanced human prostate cancer and necessary for progressive growth of prostate cancer cells in nude mice.
    Lu S; Lee J; Revelo M; Wang X; Lu S; Dong Z
    Clin Cancer Res; 2007 Oct; 13(19):5692-702. PubMed ID: 17908958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix metalloproteinase-1 is a crucial bone metastasis factor in a human breast cancer-derived highly invasive cell line.
    Okuyama N; Matsumine A; Kosugi R; Wakabayashi H; Uchida A
    Oncol Rep; 2008 Dec; 20(6):1497-504. PubMed ID: 19020733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome 18 suppresses tumorigenic properties of human prostate cancer cells.
    Gagnon A; Ripeau JS; Zvieriev V; Chevrette M
    Genes Chromosomes Cancer; 2006 Mar; 45(3):220-30. PubMed ID: 16281261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-proliferative effects of physiological concentrations of enterolactone in models of prostate tumourigenesis.
    McCann MJ; Rowland IR; Roy NC
    Mol Nutr Food Res; 2013 Feb; 57(2):212-24. PubMed ID: 23148045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of NF-kappaB activity by NDRG2 expression attenuates the invasive potential of highly malignant tumor cells.
    Kim A; Kim MJ; Yang Y; Kim JW; Yeom YI; Lim JS
    Carcinogenesis; 2009 Jun; 30(6):927-36. PubMed ID: 19336468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cadmium-induced malignant transformation of human prostate epithelial cells.
    Achanzar WE; Diwan BA; Liu J; Quader ST; Webber MM; Waalkes MP
    Cancer Res; 2001 Jan; 61(2):455-8. PubMed ID: 11212230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and phenotypic characterization of a subpopulation of T84 human colon cancer cells, after selection on activated endothelial cells.
    Alessandro R; Flugy AM; Russo D; Stassi G; De Leo A; Corrado C; Alaimo G; De Leo G
    J Cell Physiol; 2005 Apr; 203(1):261-72. PubMed ID: 15484219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic signatures of malignant progression in prostate epithelial cells.
    Teahan O; Bevan CL; Waxman J; Keun HC
    Int J Biochem Cell Biol; 2011 Jul; 43(7):1002-9. PubMed ID: 20633696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive genotypic analysis of human prostate cancer cell lines and sublines derived from metastases after orthotopic implantation in nude mice.
    Lensch R; Götz C; Andres C; Bex A; Lehmann J; Zwergel T; Unteregger G; Kamradt J; Stoeckle M; Wullich B
    Int J Oncol; 2002 Oct; 21(4):695-706. PubMed ID: 12239607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Androgen receptor and invasion in prostate cancer.
    Hara T; Miyazaki H; Lee A; Tran CP; Reiter RE
    Cancer Res; 2008 Feb; 68(4):1128-35. PubMed ID: 18281488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasoactive intestinal peptide (VIP) induces malignant transformation of the human prostate epithelial cell line RWPE-1.
    Fernández-Martínez AB; Bajo AM; Isabel Arenas M; Sánchez-Chapado M; Prieto JC; Carmena MJ
    Cancer Lett; 2010 Dec; 299(1):11-21. PubMed ID: 20709445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of curcumin on the invasiveness of prostate cancer in vitro and in vivo.
    Hong JH; Ahn KS; Bae E; Jeon SS; Choi HY
    Prostate Cancer Prostatic Dis; 2006; 9(2):147-52. PubMed ID: 16389264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.