These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16471524)

  • 1. Strain energies due to nonplanar distortion of fullerenes and their dependence on structural motifs.
    Sun CH; Lu GQ; Cheng HM
    J Phys Chem B; 2006 Jan; 110(1):218-21. PubMed ID: 16471524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonplanar distortions and strain energies of polycyclic aromatic hydrocarbons.
    Sun CH; Lu GQ; Cheng HM
    J Phys Chem B; 2006 Mar; 110(10):4563-8. PubMed ID: 16526685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stable non-IPR C60 and C70 fullerenes containing a uniform distribution of pyrenes and adjacent pentagons.
    Zettergren H; Alcamí M; Martín F
    Chemphyschem; 2008 Apr; 9(6):861-6. PubMed ID: 18404775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes.
    Rodríguez-Fortea A; Alegret N; Balch AL; Poblet JM
    Nat Chem; 2010 Nov; 2(11):955-61. PubMed ID: 20966952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): a density functional theory study.
    Popov AA; Dunsch L
    J Am Chem Soc; 2007 Sep; 129(38):11835-49. PubMed ID: 17760444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fused five-membered rings determine the stability of C60F60.
    Jia J; Wu HS; Xu XH; Zhang XM; Jiao H
    J Am Chem Soc; 2008 Mar; 130(12):3985-8. PubMed ID: 18311972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and structural characterization of a family of endohedral fullerenes including the large, chiral cage fullerenes Tb(3)N@C(88) and Tb(3)N@C(86) as well as the I(h) and D(5)(h) isomers of Tb(3)N@C(80).
    Zuo T; Beavers CM; Duchamp JC; Campbell A; Dorn HC; Olmstead MM; Balch AL
    J Am Chem Soc; 2007 Feb; 129(7):2035-43. PubMed ID: 17256857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The way of stabilizing non-IPR fullerenes and structural elucidation of C(54)Cl(8).
    Gao X; Zhao Y
    J Comput Chem; 2007 Mar; 28(4):795-801. PubMed ID: 17226829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonclassical fullerenes with a heptagon violating the pentagon adjacency penalty rule.
    Gan LH; Zhao JQ; Hui Q
    J Comput Chem; 2010 Jun; 31(8):1715-21. PubMed ID: 20082391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative investigation on non-IPR C68 and IPR C78 fullerenes encaging Sc3N molecules.
    Park SS; Liu D; Hagelberg F
    J Phys Chem A; 2005 Oct; 109(39):8865-73. PubMed ID: 16834290
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stabilization of fused-pentagon fullerene molecules.
    Tan YZ; Xie SY; Huang RB; Zheng LS
    Nat Chem; 2009 Sep; 1(6):450-60. PubMed ID: 21378913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strain Release of Fused Pentagons in Fullerene Cages by Chemical Functionalization.
    Guan R; Chen M; Jin F; Yang S
    Angew Chem Int Ed Engl; 2020 Jan; 59(3):1048-1073. PubMed ID: 30884036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key Structural Motifs To Predict the Cage Topology in Endohedral Metallofullerenes.
    Wang Y; Díaz-Tendero S; Martín F; Alcamí M
    J Am Chem Soc; 2016 Feb; 138(5):1551-60. PubMed ID: 26762322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evolution of anionic silicon clusters SiN (20 Bai J; Cui LF; Wang J; Yoo S; Li X; Jellinek J; Koehler C; Frauenheim T; Wang LS; Zeng XC
    J Phys Chem A; 2006 Jan; 110(3):908-12. PubMed ID: 16419988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structures and energies of isolobal (BCO)n and (CH)n cages.
    Wu HS; Qin XF; Xu XH; Jiao H; Schleyer PV
    J Am Chem Soc; 2005 Feb; 127(7):2334-8. PubMed ID: 15713113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A geometric constraint, the head-to-tail exclusion rule, may be the basis for the isolated-pentagon rule in fullerenes with more than 60 vertices.
    Schein S; Friedrich T
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19142-7. PubMed ID: 19050075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C2(22010)-C78 departs from the isolated pentagon rule.
    Beavers CM; Chaur MN; Olmstead MM; Echegoyen L; Balch AL
    J Am Chem Soc; 2009 Aug; 131(32):11519-24. PubMed ID: 19601601
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An orifice-size index for open-cage fullerenes.
    Chuang SC; Murata Y; Murata M; Komatsu K
    J Org Chem; 2007 Aug; 72(17):6447-53. PubMed ID: 17637065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-IPR fullerenes with properly closed shells.
    Fowler PW; Myrvold W
    Phys Chem Chem Phys; 2010 Nov; 12(44):14822-6. PubMed ID: 20936217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origin of kinetic instability of fullerenes that violate the isolated pentagon rule.
    Aihara J
    J Phys Chem A; 2015 Mar; 119(12):3089-97. PubMed ID: 25746678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.