These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 16471665)

  • 1. Temperature dependence of the Raman spectra of individual carbon nanotubes.
    Zhou Z; Dou X; Ci L; Song L; Liu D; Gao Y; Wang J; Liu L; Zhou W; Xie S; Wan D
    J Phys Chem B; 2006 Jan; 110(3):1206-9. PubMed ID: 16471665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate-induced Raman frequency variation for single-walled carbon nanotubes.
    Zhang Y; Zhang J; Son H; Kong J; Liu Z
    J Am Chem Soc; 2005 Dec; 127(49):17156-7. PubMed ID: 16332042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman spectroscopy of strained single-walled carbon nanotubes.
    Liu Z; Zhang J; Gao B
    Chem Commun (Camb); 2009 Dec; (45):6902-18. PubMed ID: 19904346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective etching of thin single-walled carbon nanotubes.
    Kalbác M; Kavan L; Dunsch L
    J Am Chem Soc; 2009 Apr; 131(12):4529-34. PubMed ID: 19317509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes.
    Villalpando-Paez F; Muramatsu H; Kim YA; Farhat H; Endo M; Terrones M; Dresselhaus MS
    Nanoscale; 2010 Mar; 2(3):406-11. PubMed ID: 20644824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation effects on the Raman spectroscopy of dielectrophoretically deposited single-walled carbon nanotubes.
    Ericson LM; Pehrsson PE
    J Phys Chem B; 2005 Nov; 109(43):20276-80. PubMed ID: 16853622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ Raman spectroelectrochemistry as a tool for the differentiation of inner tubes of double-wall carbon nanotubes and thin single-wall carbon nanotubes.
    Kalbác M; Kavan L; Dunsch L
    Anal Chem; 2007 Dec; 79(23):9074-81. PubMed ID: 17973461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy gaps, electronic structures, and x-ray spectroscopies of finite semiconductor single-walled carbon nanotubes.
    Gao B; Jiang J; Wu Z; Luo Y
    J Chem Phys; 2008 Feb; 128(8):084707. PubMed ID: 18315072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic properties of propylamine-functionalized single-walled carbon nanotubes.
    Müller M; Meinke R; Maultzsch J; Syrgiannis Z; Hauke F; Pekker A; Kamarás K; Hirsch A; Thomsen C
    Chemphyschem; 2010 Aug; 11(11):2444-8. PubMed ID: 20589825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroelectrochemistry of carbon nanostructures.
    Kavan L; Dunsch L
    Chemphyschem; 2007 May; 8(7):974-98. PubMed ID: 17476657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonuniform compressive strain in horizontally aligned single-walled carbon nanotubes grown on single crystal quartz.
    Ozel T; Abdula D; Hwang E; Shim M
    ACS Nano; 2009 Aug; 3(8):2217-24. PubMed ID: 19642686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependent Raman spectra of isolated suspended single-walled carbon nanotubes.
    Zhang X; Yang F; Zhao D; Cai L; Luan P; Zhang Q; Zhou W; Zhang N; Fan Q; Wang Y; Liu H; Zhou W; Xie S
    Nanoscale; 2014 Apr; 6(8):3949-53. PubMed ID: 24202030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bare gold nanoparticles mediated surface-enhanced Raman spectroscopic determination and quantification of carboxylated single-walled carbon nanotubes.
    López-Lorente AI; Simonet BM; Valcárcel M; Mizaikoff B
    Anal Chim Acta; 2013 Jul; 788():122-8. PubMed ID: 23845490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical doping of chirality-resolved carbon nanotubes.
    Kavan L; Kalbac M; Zukalova M; Dunsch L
    J Phys Chem B; 2005 Oct; 109(42):19613-9. PubMed ID: 16853536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of impurities on the x-ray photoelectron spectroscopy and Raman spectra of single-wall carbon nanotubes.
    Li Z; Biris AS; Dervishi E; Saini V; Xu Y; Biris AR; Lupu D
    J Chem Phys; 2007 Oct; 127(15):154713. PubMed ID: 17949197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy of individual single-walled carbon nanotubes from various sources.
    Hennrich F; Krupke R; Lebedkin S; Arnold K; Fischer R; Resasco DE; Kappes MM
    J Phys Chem B; 2005 Jun; 109(21):10567-73. PubMed ID: 16852281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Raman spectroscopy of free-standing individual semiconducting single-wall carbon nanotubes.
    Paillet M; Langlois S; Sauvajol JL; Marty L; Iaia A; Naud C; Bouchiat V; Bonnot AM
    J Phys Chem B; 2006 Jan; 110(1):164-9. PubMed ID: 16471515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of Raman radial breathing modes in double-wall carbon nanotubes and bundles of nanotubes.
    Han SP; Goddard WA
    J Phys Chem B; 2009 May; 113(20):7199-204. PubMed ID: 19388682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale vibrational analysis of single-walled carbon nanotubes.
    Anderson N; Hartschuh A; Cronin S; Novotny L
    J Am Chem Soc; 2005 Mar; 127(8):2533-7. PubMed ID: 15725008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of bundled and individual triple-walled carbon nanotubes by resonant Raman spectroscopy.
    Hirschmann TCh; Araujo PT; Muramatsu H; Zhang X; Nielsch K; Kim YA; Dresselhaus MS
    ACS Nano; 2013 Mar; 7(3):2381-7. PubMed ID: 23311296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.