BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16471695)

  • 1. Binding of phosphinate and phosphonate inhibitors to aspartic proteases: a first-principles study.
    Vidossich P; Carloni P
    J Phys Chem B; 2006 Jan; 110(3):1437-42. PubMed ID: 16471695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational analysis of plasmepsin IV bound to an allophenylnorstatine inhibitor.
    Gutiérrez-de-Terán H; Nervall M; Dunn BM; Clemente JC; Aqvist J
    FEBS Lett; 2006 Oct; 580(25):5910-6. PubMed ID: 17045991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of dog and human gastric lipases by enantiomeric phosphonate inhibitors: a structure-activity study.
    Miled N; Roussel A; Bussetta C; Berti-Dupuis L; Rivière M; Buono G; Verger R; Cambillau C; Canaan S
    Biochemistry; 2003 Oct; 42(40):11587-93. PubMed ID: 14529268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lowering the entropic barrier for binding conformationally flexible inhibitors to enzymes.
    Khan AR; Parrish JC; Fraser ME; Smith WW; Bartlett PA; James MN
    Biochemistry; 1998 Dec; 37(48):16839-45. PubMed ID: 9836576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic mapping of the inhibitor site of the aspartic protease endothiapepsin.
    Gómez J; Freire E
    J Mol Biol; 1995 Sep; 252(3):337-50. PubMed ID: 7563055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of a small molecule nonpeptide active site beta-secretase inhibitor that displays a nontraditional binding mode for aspartyl proteases.
    Coburn CA; Stachel SJ; Li YM; Rush DM; Steele TG; Chen-Dodson E; Holloway MK; Xu M; Huang Q; Lai MT; DiMuzio J; Crouthamel MC; Shi XP; Sardana V; Chen Z; Munshi S; Kuo L; Makara GM; Annis DA; Tadikonda PK; Nash HM; Vacca JP; Wang T
    J Med Chem; 2004 Dec; 47(25):6117-9. PubMed ID: 15566281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The most potent organophosphorus inhibitors of leucine aminopeptidase. Structure-based design, chemistry, and activity.
    Grembecka J; Mucha A; Cierpicki T; Kafarski P
    J Med Chem; 2003 Jun; 46(13):2641-55. PubMed ID: 12801228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of lead fullerene-based inhibitor bound to human immunodeficiency virus type 1 protease in solution from molecular dynamics simulations.
    Lee VS; Nimmanpipug P; Aruksakunwong O; Promsri S; Sompornpisut P; Hannongbua S
    J Mol Graph Model; 2007 Sep; 26(2):558-70. PubMed ID: 17468026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the orientation of the catalytic dyad in aspartic proteases.
    Friedman R; Caflisch A
    Proteins; 2010 May; 78(6):1575-82. PubMed ID: 20112416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereoselectivity by enantiomeric inhibitors of matrix metalloproteinase-8: new insights from molecular dynamics simulations.
    Aschi M; Besker N; Re N; Pochetti G; Coletti C; Gallina C; Mazza F
    J Med Chem; 2007 Jan; 50(2):211-8. PubMed ID: 17228863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibitor binding to the plasmepsin IV aspartic protease from Plasmodium falciparum.
    Gutiérrez-de-Terán H; Nervall M; Ersmark K; Liu P; Janka LK; Dunn B; Hallberg A; Aqvist J
    Biochemistry; 2006 Sep; 45(35):10529-41. PubMed ID: 16939205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions of the dimeric triad of HIV-1 aspartyl protease with inhibitors.
    Mager PP; De Clercq E; Froeyen M; Reinhardt R
    Drug Des Discov; 2003; 18(2-3):53-64. PubMed ID: 14675943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and evaluation of new tripeptide phosphonate inhibitors of MMP-8 and MMP-2.
    Agamennone M; Campestre C; Preziuso S; Consalvi V; Crucianelli M; Mazza F; Politi V; Ragno R; Tortorella P; Gallina C
    Eur J Med Chem; 2005 Mar; 40(3):271-9. PubMed ID: 15725496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical study of torsional flexibility in the active site of aspartic proteinases: implications for catalysis.
    Beveridge A
    Proteins; 1996 Mar; 24(3):322-34. PubMed ID: 8778779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New organofluorine building blocks: inhibition of the malarial aspartic proteases plasmepsin II and IV by alicyclic alpha,alpha-difluoroketone hydrates.
    Fäh C; Hardegger LA; Baitsch L; Schweizer WB; Meyer S; Bur D; Diederich F
    Org Biomol Chem; 2009 Oct; 7(19):3947-57. PubMed ID: 19763297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the dimerization of retroviral proteases: the "fireman's grip" and dimerization.
    Ingr M; Uhlíková T; Strísovský K; Majerová E; Konvalinka J
    Protein Sci; 2003 Oct; 12(10):2173-82. PubMed ID: 14500875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potent pyrrolidine- and piperidine-based BACE-1 inhibitors.
    Iserloh U; Wu Y; Cumming JN; Pan J; Wang LY; Stamford AW; Kennedy ME; Kuvelkar R; Chen X; Parker EM; Strickland C; Voigt J
    Bioorg Med Chem Lett; 2008 Jan; 18(1):414-7. PubMed ID: 18023580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovery of potent, selective, orally active, nonpeptide inhibitors of human mast cell chymase.
    Greco MN; Hawkins MJ; Powell ET; Almond HR; de Garavilla L; Hall J; Minor LK; Wang Y; Corcoran TW; Di Cera E; Cantwell AM; Savvides SN; Damiano BP; Maryanoff BE
    J Med Chem; 2007 Apr; 50(8):1727-30. PubMed ID: 17361995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protonation state of the catalytic aspartates in plasmepsin II.
    Friedman R; Caflisch A
    FEBS Lett; 2007 Aug; 581(21):4120-4. PubMed ID: 17689534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric preference of serine proteases toward phosphonate and phosphinate esters.
    Walker B; Wharry S; Hamilton RJ; Martin SL; Healy A; Walker BJ
    Biochem Biophys Res Commun; 2000 Oct; 276(3):1235-9. PubMed ID: 11027616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.