BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 16471708)

  • 1. Ultrafast laser studies of the photothermal properties of gold nanocages.
    Hu M; Petrova H; Chen J; McLellan JM; Siekkinen AR; Marquez M; Li X; Xia Y; Hartland GV
    J Phys Chem B; 2006 Feb; 110(4):1520-4. PubMed ID: 16471708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrational response of Au-Ag nanoboxes and nanocages to ultrafast laser-induced heating.
    Petrova H; Lin CH; Hu M; Chen J; Siekkinen AR; Xia Y; Sader JE; Hartland GV
    Nano Lett; 2007 Apr; 7(4):1059-63. PubMed ID: 17358093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new photothermal therapeutic agent: core-free nanostructured Au x Ag1-x dendrites.
    Hu KW; Huang CC; Hwu JR; Su WC; Shieh DB; Yeh CS
    Chemistry; 2008; 14(10):2956-64. PubMed ID: 18335446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile synthesis of Ag nanocubes and Au nanocages.
    Skrabalak SE; Au L; Li X; Xia Y
    Nat Protoc; 2007; 2(9):2182-90. PubMed ID: 17853874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation of heating of a gold nanoparticle and the surrounding microenvironment by nanosecond laser pulses for nanomedicine applications.
    Sassaroli E; Li KC; O'Neill BE
    Phys Med Biol; 2009 Sep; 54(18):5541-60. PubMed ID: 19717888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of Ag nanocubes into Ag-Au hollow nanostructures with enriched Ag contents to improve SERS activity and chemical stability.
    Yang Y; Zhang Q; Fu ZW; Qin D
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3750-7. PubMed ID: 24476231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasmall gold nanoparticles anchored to graphene and enhanced photothermal effects by laser irradiation of gold nanostructures in graphene oxide solutions.
    Zedan AF; Moussa S; Terner J; Atkinson G; El-Shall MS
    ACS Nano; 2013 Jan; 7(1):627-36. PubMed ID: 23194145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties.
    Polavarapu L; Xu QH
    Nanotechnology; 2009 May; 20(18):185606. PubMed ID: 19420622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impulsive solvent heating probed by picosecond x-ray diffraction.
    Cammarata M; Lorenc M; Kim TK; Lee JH; Kong QY; Pontecorvo E; Lo Russo M; Schiró G; Cupane A; Wulff M; Ihee H
    J Chem Phys; 2006 Mar; 124(12):124504. PubMed ID: 16599694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of femtosecond-laser induced nanostructures in optical memory.
    Shimotsuma Y; Sakakura M; Miura K; Qiu J; Kazansky PG; Fujita K; Hirao K
    J Nanosci Nanotechnol; 2007 Jan; 7(1):94-104. PubMed ID: 17455477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational synthesis, self-assembly, and optical properties of PbS-Au heterogeneous nanostructures via preferential deposition.
    Yang J; Elim HI; Zhang Q; Lee JY; Ji W
    J Am Chem Soc; 2006 Sep; 128(36):11921-6. PubMed ID: 16953633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of Pd@M(x)Cu(1-x) (M = Au, Pd, and Pt) nanocages with porous walls and a yolk-shell structure through galvanic replacement reactions.
    Xie S; Jin M; Tao J; Wang Y; Xie Z; Zhu Y; Xia Y
    Chemistry; 2012 Nov; 18(47):14974-80. PubMed ID: 23108763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmon coupling in clusters composed of two-dimensionally ordered gold nanocubes.
    Chen H; Sun Z; Ni W; Woo KC; Lin HQ; Sun L; Yan C; Wang J
    Small; 2009 Sep; 5(18):2111-9. PubMed ID: 19544318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold nanocages for cancer imaging and therapy.
    Au L; Chen J; Wang LV; Xia Y
    Methods Mol Biol; 2010; 624():83-99. PubMed ID: 20217590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser fragmentation of water-suspended gold flakes via spherical submicroparticles to fine nanoparticles.
    Kawasaki M; Masuda K
    J Phys Chem B; 2005 May; 109(19):9379-88. PubMed ID: 16852124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold nanostructures: engineering their plasmonic properties for biomedical applications.
    Hu M; Chen J; Li ZY; Au L; Hartland GV; Li X; Marquez M; Xia Y
    Chem Soc Rev; 2006 Nov; 35(11):1084-94. PubMed ID: 17057837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile preparation of gold nanocages and hollow gold nanospheres via solvent thermal treatment and their surface plasmon resonance and photothermal properties.
    Wang H; Han J; Lu W; Zhang J; Li J; Jiang L
    J Colloid Interface Sci; 2015 Feb; 440():236-44. PubMed ID: 25460711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gold nanocages for cancer detection and treatment.
    Skrabalak SE; Au L; Lu X; Li X; Xia Y
    Nanomedicine (Lond); 2007 Oct; 2(5):657-68. PubMed ID: 17976028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods.
    Cheng FY; Chen CT; Yeh CS
    Nanotechnology; 2009 Oct; 20(42):425104. PubMed ID: 19779243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring controlled release of payload from gold nanocages using surface enhanced Raman scattering.
    Tian L; Gandra N; Singamaneni S
    ACS Nano; 2013 May; 7(5):4252-60. PubMed ID: 23577650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.