These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16471879)

  • 1. TiCl3-enhanced NaAlH4: impact of excess al and development of the Al1-yTiy phase during cycling.
    Brinks HW; Sulic M; Jensen CM; Hauback BC
    J Phys Chem B; 2006 Feb; 110(6):2740-5. PubMed ID: 16471879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synchrotron X-ray studies of Al(1-y)Ti(y) formation and re-hydriding inhibition in Ti-enhanced NaAlH4.
    Brinks HW; Hauback BC; Srinivasan SS; Jensen CM
    J Phys Chem B; 2005 Aug; 109(33):15780-5. PubMed ID: 16853003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of the local structure around Ti atoms in NaAlH4 doped with TiCl3 or Ti13.6THF by ball milling using X-ray absorption and X-ray photoelectron spectroscopy.
    Léon A; Kircher O; Fichtner M; Rothe J; Schild D
    J Phys Chem B; 2006 Jan; 110(3):1192-200. PubMed ID: 16471663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4.
    Wang P; Kang XD; Cheng HM
    J Phys Chem B; 2005 Nov; 109(43):20131-6. PubMed ID: 16853602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor.
    Stavila V; Bhakta RK; Alam TM; Majzoub EH; Allendorf MD
    ACS Nano; 2012 Nov; 6(11):9807-17. PubMed ID: 23075161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An x-ray photoemission electron microscopy study of the formation of Ti-Al phases in 4 mol% TiCl3 catalyzed NaAlH4 during high energy ball milling.
    Dobbins T; Abrecht M; Uprety Y; Moore K
    Nanotechnology; 2009 May; 20(20):204014. PubMed ID: 19420662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchrotron X-ray studies of Ti-doped NaAlH4.
    Canton P; Fichtner M; Frommen C; Léon A
    J Phys Chem B; 2006 Feb; 110(7):3051-4. PubMed ID: 16494307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The kinetic enhancement of hydrogen cycling in NaAlH(4) by melt infusion into nanoporous carbon aerogel.
    Stephens RD; Gross AF; Van Atta SL; Vajo JJ; Pinkerton FE
    Nanotechnology; 2009 May; 20(20):204018. PubMed ID: 19420666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new Li-Al-N-H system for reversible hydrogen storage.
    Lu J; Fang ZZ; Sohn HY
    J Phys Chem B; 2006 Jul; 110(29):14236-9. PubMed ID: 16854126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the role of Ti in reversible hydrogen storage as sodium alanate: a combined experimental and density functional theoretical approach.
    Chaudhuri S; Graetz J; Ignatov A; Reilly JJ; Muckerman JT
    J Am Chem Soc; 2006 Sep; 128(35):11404-15. PubMed ID: 16939263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate.
    Yin LC; Wang P; Kang XD; Sun CH; Cheng HM
    Phys Chem Chem Phys; 2007 Mar; 9(12):1499-502. PubMed ID: 17356758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescence XAFS study of NaAlH(4) doped with a Ce-based precursor.
    Léon A; Rothe J; Chłopek K; Zabara O; Fichtner M
    Phys Chem Chem Phys; 2009 Oct; 11(39):8829-34. PubMed ID: 20449029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved hydrogen storage kinetics of nanoconfined NaAlH₄ catalyzed with TiCl₃ nanoparticles.
    Nielsen TK; Polanski M; Zasada D; Javadian P; Besenbacher F; Bystrzycki J; Skibsted J; Jensen TR
    ACS Nano; 2011 May; 5(5):4056-64. PubMed ID: 21446760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ti-doped LiAlH4 for hydrogen storage: synthesis, catalyst loading and cycling performance.
    Liu X; Langmi HW; Beattie SD; Azenwi FF; McGrady GS; Jensen CM
    J Am Chem Soc; 2011 Oct; 133(39):15593-7. PubMed ID: 21863886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orbital-free density functional theory applied to NaAlH4.
    Frankcombe TJ; Kroes GJ; Choly NI; Kaxiras E
    J Phys Chem B; 2005 Sep; 109(34):16554-62. PubMed ID: 16853104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First-principles study of Ti-catalyzed hydrogen chemisorption on an Al surface: a critical first step for reversible hydrogen storage in NaAlH4.
    Chaudhuri S; Muckerman JT
    J Phys Chem B; 2005 Apr; 109(15):6952-7. PubMed ID: 16851788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory.
    Vegge T
    Phys Chem Chem Phys; 2006 Nov; 8(42):4853-61. PubMed ID: 17066174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics and structure of single Ti defects and their influence on the decomposition of NaAlH(4).
    Huang C; Zhao YJ; Wang H; Guo J; Zhu M
    Phys Chem Chem Phys; 2011 Jan; 13(2):552-62. PubMed ID: 21046044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen storage in LiAlH4: predictions of the crystal structures and reaction mechanisms of intermediate phases from quantum mechanics.
    Kang JK; Lee JY; Muller RP; Goddard WA
    J Chem Phys; 2004 Dec; 121(21):10623-33. PubMed ID: 15549945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of doped transition metal on reversible hydrogen release/uptake from NaAlH4.
    Liu J; Han Y; Ge Q
    Chemistry; 2009; 15(7):1685-95. PubMed ID: 19115295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.