These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 1647210)

  • 41. Phosphorylation of the S. cerevisiae Cdc25 in response to glucose results in its dissociation from Ras.
    Gross E; Goldberg D; Levitzki A
    Nature; 1992 Dec 24-31; 360(6406):762-5. PubMed ID: 1334534
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Yeast mutants temperature-sensitive for growth after random mutagenesis of the chromosomal RAS2 gene and deletion of the RAS1 gene.
    Fasano O; Crechet JB; De Vendittis E; Zahn R; Feger G; Vitelli A; Parmeggiani A
    EMBO J; 1988 Nov; 7(11):3375-83. PubMed ID: 3145192
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular cloning of CIF1, a yeast gene necessary for growth on glucose.
    González MI; Stucka R; Blázquez MA; Feldmann H; Gancedo C
    Yeast; 1992 Mar; 8(3):183-92. PubMed ID: 1315471
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The CDC25 protein of Saccharomyces cerevisiae promotes exchange of guanine nucleotides bound to ras.
    Jones S; Vignais ML; Broach JR
    Mol Cell Biol; 1991 May; 11(5):2641-6. PubMed ID: 2017169
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An additional homolog of the fission yeast cdc25+ gene occurs in humans and is highly expressed in some cancer cells.
    Nagata A; Igarashi M; Jinno S; Suto K; Okayama H
    New Biol; 1991 Oct; 3(10):959-68. PubMed ID: 1662986
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cloning of the STE5 gene of Saccharomyces cerevisiae as a suppressor of the mating defect of cdc25 temperature-sensitive mutants.
    Perlman R; Yablonski D; Simchen G; Levitzki A
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5474-8. PubMed ID: 8516289
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A Candida albicans homolog of CDC25 is functional in Saccharomyces cerevisiae.
    Goldberg D; Marbach I; Gross E; Levitzki A; Simchen G
    Eur J Biochem; 1993 Apr; 213(1):195-204. PubMed ID: 8477693
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Isolation and characterization of temperature-sensitive mutations in the RAS2 and CYR1 genes of Saccharomyces cerevisiae.
    Mitsuzawa H; Uno I; Oshima T; Ishikawa T
    Genetics; 1989 Dec; 123(4):739-48. PubMed ID: 2558958
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A role for the noncatalytic N terminus in the function of Cdc25, a Saccharomyces cerevisiae Ras-guanine nucleotide exchange factor.
    Chen RA; Michaeli T; Van Aelst L; Ballester R
    Genetics; 2000 Apr; 154(4):1473-84. PubMed ID: 10747046
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ras-pathway has a dual role in yeast galactose metabolism.
    Mirisola MG; Gallo A; De Leo G
    FEBS Lett; 2007 May; 581(10):2009-16. PubMed ID: 17475260
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Cdc25 protein of Saccharomyces cerevisiae is required for normal glucose transport.
    Silljé HH; ter Schure EG; Verkleij AJ; Boonstra J; Verrips CT
    Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1765-73. PubMed ID: 8757740
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Requirement of one functional RAS gene and inability of an oncogenic ras variant to mediate the glucose-induced cyclic AMP signal in the yeast Saccharomyces cerevisiae.
    Mbonyi K; Beullens M; Detremerie K; Geerts L; Thevelein JM
    Mol Cell Biol; 1988 Aug; 8(8):3051-7. PubMed ID: 2850478
    [TBL] [Abstract][Full Text] [Related]  

  • 53. IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein.
    Tanaka K; Nakafuku M; Tamanoi F; Kaziro Y; Matsumoto K; Toh-e A
    Mol Cell Biol; 1990 Aug; 10(8):4303-13. PubMed ID: 2164637
    [TBL] [Abstract][Full Text] [Related]  

  • 54. IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae.
    Tanaka K; Matsumoto K; Toh-E A
    Mol Cell Biol; 1989 Feb; 9(2):757-68. PubMed ID: 2540426
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Overexpression of RPI1, a novel inhibitor of the yeast Ras-cyclic AMP pathway, down-regulates normal but not mutationally activated ras function.
    Kim JH; Powers S
    Mol Cell Biol; 1991 Aug; 11(8):3894-904. PubMed ID: 1649384
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Divergent roles of RAS1 and RAS2 in yeast longevity.
    Sun J; Kale SP; Childress AM; Pinswasdi C; Jazwinski SM
    J Biol Chem; 1994 Jul; 269(28):18638-45. PubMed ID: 8034612
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Construction of high sulphite-producing industrial strain of Saccharomyces cerevisiae].
    Qu N; He XP; Guo XN; Liu N; Zhang BR
    Wei Sheng Wu Xue Bao; 2006 Feb; 46(1):38-42. PubMed ID: 16579462
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Identification of a human guanine nucleotide-releasing factor (H-GRF55) specific for Ras proteins.
    Schweighoffer F; Faure M; Fath I; Chevallier-Multon MC; Apiou F; Dutrillaux B; Sturani E; Jacquet M; Tocque B
    Oncogene; 1993 Jun; 8(6):1477-85. PubMed ID: 7684828
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of the domain of Saccharomyces cerevisiae adenylate cyclase associated with the regulatory function of RAS products.
    Uno I; Mitsuzawa H; Tanaka K; Oshima T; Ishikawa T
    Mol Gen Genet; 1987 Dec; 210(2):187-94. PubMed ID: 3325773
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The minimal active domain of the mouse ras exchange factor CDC25Mm.
    Coccetti P; Mauri I; Alberghina L; Martegani E; Parmeggiani A
    Biochem Biophys Res Commun; 1995 Jan; 206(1):253-9. PubMed ID: 7818528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.