BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 16472219)

  • 1. The FlexX database docking environment--rational extraction of receptor based pharmacophores.
    Claussen H; Gastreich M; Apelt V; Greene J; Hindle SA; Lemmen C
    Curr Drug Discov Technol; 2004 Jan; 1(1):49-60. PubMed ID: 16472219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FlexX-Scan: fast, structure-based virtual screening.
    Schellhammer I; Rarey M
    Proteins; 2004 Nov; 57(3):504-17. PubMed ID: 15382244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible docking under pharmacophore type constraints.
    Hindle SA; Rarey M; Buning C; Lengaue T
    J Comput Aided Mol Des; 2002 Feb; 16(2):129-49. PubMed ID: 12188022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors.
    Krüger DM; Evers A
    ChemMedChem; 2010 Jan; 5(1):148-58. PubMed ID: 19908272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maximum common binding modes (MCBM): consensus docking scoring using multiple ligand information and interaction fingerprints.
    Renner S; Derksen S; Radestock S; Mörchen F
    J Chem Inf Model; 2008 Feb; 48(2):319-32. PubMed ID: 18211051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations.
    Bissantz C; Folkers G; Rognan D
    J Med Chem; 2000 Dec; 43(25):4759-67. PubMed ID: 11123984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New scoring functions for virtual screening from molecular dynamics simulations with a quantum-refined force-field (QRFF-MD). Application to cyclin-dependent kinase 2.
    Ferrara P; Curioni A; Vangrevelinghe E; Meyer T; Mordasini T; Andreoni W; Acklin P; Jacoby E
    J Chem Inf Model; 2006; 46(1):254-63. PubMed ID: 16426061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Considerations in compound database preparation--"hidden" impact on virtual screening results.
    Knox AJ; Meegan MJ; Carta G; Lloyd DG
    J Chem Inf Model; 2005; 45(6):1908-19. PubMed ID: 16309298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-based virtual screening of chemical databases. II. Are homology models of G-Protein Coupled Receptors suitable targets?
    Bissantz C; Bernard P; Hibert M; Rognan D
    Proteins; 2003 Jan; 50(1):5-25. PubMed ID: 12471595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of multiple binding modes of the CDK2 inhibitors, anilinopyrazoles, using the automated docking programs GOLD, FlexX, and LigandFit: an evaluation of performance.
    Sato H; Shewchuk LM; Tang J
    J Chem Inf Model; 2006; 46(6):2552-62. PubMed ID: 17125195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Library design and virtual screening using multiple 4-point pharmacophore fingerprints.
    Mason JS; Cheney DL
    Pac Symp Biocomput; 2000; ():576-87. PubMed ID: 10902205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GRID-based three-dimensional pharmacophores I: FLAPpharm, a novel approach for pharmacophore elucidation.
    Cross S; Baroni M; Goracci L; Cruciani G
    J Chem Inf Model; 2012 Oct; 52(10):2587-98. PubMed ID: 22970894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual screening to enrich a compound collection with CDK2 inhibitors using docking, scoring, and composite scoring models.
    Cotesta S; Giordanetto F; Trosset JY; Crivori P; Kroemer RT; Stouten PF; Vulpetti A
    Proteins; 2005 Sep; 60(4):629-43. PubMed ID: 16028223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of two implementations of the incremental construction algorithm in flexible docking of thrombin inhibitors.
    Knegtel RM; Bayada DM; Engh RA; von der Saal W; van Geerestein VJ; Grootenhuis PD
    J Comput Aided Mol Des; 1999 Mar; 13(2):167-83. PubMed ID: 10091122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the FLEXX incremental construction algorithm for protein-ligand docking.
    Kramer B; Rarey M; Lengauer T
    Proteins; 1999 Nov; 37(2):228-41. PubMed ID: 10584068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy and selectivity in flexible database docking.
    Knegtel RM; Wagener M
    Proteins; 1999 Nov; 37(3):334-45. PubMed ID: 10591095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast de novo docking combining pharmacophores and combinatorics.
    Gastreich M; Lilienthal M; Briem H; Claussen H
    J Comput Aided Mol Des; 2006 Dec; 20(12):717-34. PubMed ID: 17265098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacophore modeling using site-identification by ligand competitive saturation (SILCS) with multiple probe molecules.
    Yu W; Lakkaraju SK; Raman EP; Fang L; MacKerell AD
    J Chem Inf Model; 2015 Feb; 55(2):407-20. PubMed ID: 25622696
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing fragment and scaffold docking by use of molecular interaction fingerprints.
    Marcou G; Rognan D
    J Chem Inf Model; 2007; 47(1):195-207. PubMed ID: 17238265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.