BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 16472645)

  • 41. The GAP1 family of GTPase-activating proteins: spatial and temporal regulators of small GTPase signalling.
    Yarwood S; Bouyoucef-Cherchalli D; Cullen PJ; Kupzig S
    Biochem Soc Trans; 2006 Nov; 34(Pt 5):846-50. PubMed ID: 17052212
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nucleotide-binding characteristics of human guanylate-binding protein 1 (hGBP1) and identification of the third GTP-binding motif.
    Praefcke GJ; Geyer M; Schwemmle M; Robert Kalbitzer H; Herrmann C
    J Mol Biol; 1999 Sep; 292(2):321-32. PubMed ID: 10493878
    [TBL] [Abstract][Full Text] [Related]  

  • 43. How guanylate-binding proteins achieve assembly-stimulated processive cleavage of GTP to GMP.
    Ghosh A; Praefcke GJ; Renault L; Wittinghofer A; Herrmann C
    Nature; 2006 Mar; 440(7080):101-4. PubMed ID: 16511497
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biochemical characterization of the Cool (Cloned-out-of-Library)/Pix (Pak-interactive exchange factor) proteins.
    Baird D; Feng Q; Cerione RA
    Methods Enzymol; 2006; 406():58-69. PubMed ID: 16472649
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SmgGDS displays differential binding and exchange activity towards different Ras isoforms.
    Vikis HG; Stewart S; Guan KL
    Oncogene; 2002 Apr; 21(15):2425-32. PubMed ID: 11948427
    [TBL] [Abstract][Full Text] [Related]  

  • 46. GEF and glucosylation assays on liposome-bound Rac.
    Mesmin B; Antonny B
    Methods Enzymol; 2006; 406():70-80. PubMed ID: 16472650
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The mechanism of Ras GTPase activation by neurofibromin.
    Phillips RA; Hunter JL; Eccleston JF; Webb MR
    Biochemistry; 2003 Apr; 42(13):3956-65. PubMed ID: 12667087
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activation of the phagocyte NADPH oxidase by Rac Guanine nucleotide exchange factors in conjunction with ATP and nucleoside diphosphate kinase.
    Mizrahi A; Molshanski-Mor S; Weinbaum C; Zheng Y; Hirshberg M; Pick E
    J Biol Chem; 2005 Feb; 280(5):3802-11. PubMed ID: 15557278
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural and functional characterization of fast-cycling RhoF GTPase.
    Sugawara R; Ueda H; Honda R
    Biochem Biophys Res Commun; 2019 May; 513(2):522-527. PubMed ID: 30981505
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural basis of effector regulation and signal termination in heterotrimeric Galpha proteins.
    Sprang SR; Chen Z; Du X
    Adv Protein Chem; 2007; 74():1-65. PubMed ID: 17854654
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of residues in the human guanylate-binding protein 1 critical for nucleotide binding and cooperative GTP hydrolysis.
    Praefcke GJ; Kloep S; Benscheid U; Lilie H; Prakash B; Herrmann C
    J Mol Biol; 2004 Nov; 344(1):257-69. PubMed ID: 15504415
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structure and chromosomal assignment to 22q12 and 17qter of the ras-related Rac2 and Rac3 human genes.
    Courjal F; Chuchana P; Theillet C; Fort P
    Genomics; 1997 Sep; 44(2):242-6. PubMed ID: 9299243
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biochemical characterization of Arabidopsis developmentally regulated G-proteins (DRGs).
    O'Connell A; Robin G; Kobe B; Botella JR
    Protein Expr Purif; 2009 Oct; 67(2):88-95. PubMed ID: 19460440
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conformational resolution of nucleotide cycling and effector interactions for multiple small GTPases determined in parallel.
    Killoran RC; Smith MJ
    J Biol Chem; 2019 Jun; 294(25):9937-9948. PubMed ID: 31088913
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The molecular basis for immune dysregulation by the hyperactivated E62K mutant of the GTPase RAC2.
    Arrington ME; Temple B; Schaefer A; Campbell SL
    J Biol Chem; 2020 Aug; 295(34):12130-12142. PubMed ID: 32636302
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Guanine nucleotide exchange factors operate by a simple allosteric competitive mechanism.
    Guo Z; Ahmadian MR; Goody RS
    Biochemistry; 2005 Nov; 44(47):15423-9. PubMed ID: 16300389
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Activated Vav2 modulates cellular invasion through Rac1 and Cdc42 in oral squamous cell carcinoma.
    Lai SY; Ziober AF; Lee MN; Cohen NA; Falls EM; Ziober BL
    Oral Oncol; 2008 Jul; 44(7):683-8. PubMed ID: 17996485
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular cloning and characterization of a Rac1 homologue cDNA from Trichomonas vaginalis.
    Fu YC; Zhang JX; Zheng XH; Liu H
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 2004 Oct; 22(5):290-3. PubMed ID: 15830884
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural insights into the GTPase domain of Escherichia coli MnmE protein.
    Monleón D; Martínez-Vicente M; Esteve V; Yim L; Prado S; Armengod ME; Celda B
    Proteins; 2007 Feb; 66(3):726-39. PubMed ID: 17143896
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Rac1-GDP trimer complex binds zinc with tetrahedral and octahedral coordination, displacing magnesium.
    Prehna G; Stebbins CE
    Acta Crystallogr D Biol Crystallogr; 2007 May; 63(Pt 5):628-35. PubMed ID: 17452788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.