BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 16472651)

  • 1. Phosphorylation of RhoGDI by p21-activated kinase 1.
    DerMardirossian CM; Bokoch GM
    Methods Enzymol; 2006; 406():80-90. PubMed ID: 16472651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oncogenic Dbl, Cdc42, and p21-activated kinase form a ternary signaling intermediate through the minimum interactive domains.
    Wang L; Zhu K; Zheng Y
    Biochemistry; 2004 Nov; 43(46):14584-93. PubMed ID: 15544329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of activation of Pak1 kinase by membrane localization.
    Lu W; Mayer BJ
    Oncogene; 1999 Jan; 18(3):797-806. PubMed ID: 9989831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationships in flexible protein domains: regulation of rho GTPases by RhoGDI and D4 GDI.
    Golovanov AP; Chuang TH; DerMardirossian C; Barsukov I; Hawkins D; Badii R; Bokoch GM; Lian LY; Roberts GC
    J Mol Biol; 2001 Jan; 305(1):121-35. PubMed ID: 11114252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PKC mediates cyclic stretch-induced cardiac hypertrophy through Rho family GTPases and mitogen-activated protein kinases in cardiomyocytes.
    Pan J; Singh US; Takahashi T; Oka Y; Palm-Leis A; Herbelin BS; Baker KM
    J Cell Physiol; 2005 Feb; 202(2):536-53. PubMed ID: 15316932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation of RhoGDI by Pak1 mediates dissociation of Rac GTPase.
    DerMardirossian C; Schnelzer A; Bokoch GM
    Mol Cell; 2004 Jul; 15(1):117-27. PubMed ID: 15225553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bead-based protein-protein interaction assays for the analysis of Rho GTPase signaling.
    Rimmele S; Gierschik P; Joos TO; Schneiderhan-Marra N
    J Mol Recognit; 2010; 23(6):543-50. PubMed ID: 21031432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localization of the Rho GTPases and some Rho effector proteins in the sperm of several mammalian species.
    Ducummon CC; Berger T
    Zygote; 2006 Aug; 14(3):249-57. PubMed ID: 16822336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GDIs: central regulatory molecules in Rho GTPase activation.
    DerMardirossian C; Bokoch GM
    Trends Cell Biol; 2005 Jul; 15(7):356-63. PubMed ID: 15921909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of RhoGDI by Src regulates Rho GTPase binding and cytosol-membrane cycling.
    DerMardirossian C; Rocklin G; Seo JY; Bokoch GM
    Mol Biol Cell; 2006 Nov; 17(11):4760-8. PubMed ID: 16943322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nucleotide exchange rates of rho and rac small GTP-binding proteins are enhanced to different extents by their regulatory protein Smg GDS.
    Sasaki T; Kato M; Nishiyama T; Takai Y
    Biochem Biophys Res Commun; 1993 Aug; 194(3):1188-93. PubMed ID: 8352776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Rac-RhoGDI complex and the structural basis for the regulation of Rho proteins by RhoGDI.
    Scheffzek K; Stephan I; Jensen ON; Illenberger D; Gierschik P
    Nat Struct Biol; 2000 Feb; 7(2):122-6. PubMed ID: 10655614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yersinia virulence depends on mimicry of host Rho-family nucleotide dissociation inhibitors.
    Prehna G; Ivanov MI; Bliska JB; Stebbins CE
    Cell; 2006 Sep; 126(5):869-80. PubMed ID: 16959567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein-protein-interactions in a multiplexed, miniaturized format a functional analysis of Rho GTPase activation and inhibition.
    Schmohl M; Rimmele S; Pötz O; Kloog Y; Gierschik P; Joos TO; Schneiderhan-Marra N
    Proteomics; 2010 Apr; 10(8):1716-20. PubMed ID: 20127689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of NADPH oxidase activation by the Rac/Rho-GDI complex.
    Di-Poï N; Fauré J; Grizot S; Molnár G; Pick E; Dagher MC
    Biochemistry; 2001 Aug; 40(34):10014-22. PubMed ID: 11513579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of small GTPases by GEFs, GAPs, and GDIs.
    Cherfils J; Zeghouf M
    Physiol Rev; 2013 Jan; 93(1):269-309. PubMed ID: 23303910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diacylglycerol kinase zeta regulates actin cytoskeleton reorganization through dissociation of Rac1 from RhoGDI.
    Abramovici H; Mojtabaie P; Parks RJ; Zhong XP; Koretzky GA; Topham MK; Gee SH
    Mol Biol Cell; 2009 Apr; 20(7):2049-59. PubMed ID: 19211846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rho GTPase signaling in Dictyostelium discoideum: insights from the genome.
    Vlahou G; Rivero F
    Eur J Cell Biol; 2006 Sep; 85(9-10):947-59. PubMed ID: 16762450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RhoGDI-3, a promising system to investigate the regulatory function of rhoGDIs: uncoupling of inhibitory and shuttling functions of rhoGDIs.
    Dransart E; Morin A; Cherfils J; Olofsson B
    Biochem Soc Trans; 2005 Aug; 33(Pt 4):623-6. PubMed ID: 16042558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An activating mutant of Cdc42 that fails to interact with Rho GDP-dissociation inhibitor localizes to the plasma membrane and mediates actin reorganization.
    Gibson RM; Gandhi PN; Tong X; Miyoshi J; Takai Y; Konieczkowski M; Sedor JR; Wilson-Delfosse AL
    Exp Cell Res; 2004 Dec; 301(2):211-22. PubMed ID: 15530857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.