BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 16472671)

  • 41. A novel method for efficient generation of transfected human osteoclasts.
    Taylor A; Rogers MJ; Tosh D; Coxon FP
    Calcif Tissue Int; 2007 Feb; 80(2):132-6. PubMed ID: 17308995
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-efficiency nonviral transfection of primary chondrocytes.
    Welter JF; Solchaga LA; Stewart MC
    Methods Mol Med; 2004; 100():129-46. PubMed ID: 15280593
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A highly efficient electroporation method for the transfection of endothelial cells.
    Hernández JL; Coll T; Ciudad CJ
    Angiogenesis; 2004; 7(3):235-41. PubMed ID: 15609078
    [TBL] [Abstract][Full Text] [Related]  

  • 44. An optimized electroporation protocol applicable to a wide range of cell lines.
    Baum C; Forster P; Hegewisch-Becker S; Harbers K
    Biotechniques; 1994 Dec; 17(6):1058-62. PubMed ID: 7873174
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Plasmid DNA and siRNA transfection of intestinal epithelial monolayers by electroporation.
    Ghartey-Tagoe EB; Babbin BA; Nusrat A; Neish AS; Prausnitz MR
    Int J Pharm; 2006 Jun; 315(1-2):122-33. PubMed ID: 16564652
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Delivery of DNA into natural killer cells for immunotherapy.
    Schoenberg K; Trompeter HI; Uhrberg M
    Methods Mol Biol; 2008; 423():165-72. PubMed ID: 18370197
    [TBL] [Abstract][Full Text] [Related]  

  • 47. JNK- and Rac1-dependent induction of immediate early gene pip92 suppresses neuronal differentiation.
    Park JB; Kim EJ; Yang EJ; Seo SR; Chung KC
    J Neurochem; 2007 Jan; 100(2):555-66. PubMed ID: 17156131
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genetic manipulation of adult mouse neurogenic niches by in vivo electroporation.
    Barnabé-Heider F; Meletis K; Eriksson M; Bergmann O; Sabelström H; Harvey MA; Mikkers H; Frisén J
    Nat Methods; 2008 Feb; 5(2):189-96. PubMed ID: 18204459
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nucleofection is highly efficient for transfecting genes into murine embryonic palatal mesenchymal cells in primary culture.
    Xiao WL; Shi B; Zheng Q; Wang Y; Huang L; Li S; Lu Y; Wu M
    Int J Oral Maxillofac Surg; 2007 May; 36(5):429-34. PubMed ID: 17467239
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Polyethylenimine PEI F25-LMW allows the long-term storage of frozen complexes as fully active reagents in siRNA-mediated gene targeting and DNA delivery.
    Höbel S; Prinz R; Malek A; Urban-Klein B; Sitterberg J; Bakowsky U; Czubayko F; Aigner A
    Eur J Pharm Biopharm; 2008 Sep; 70(1):29-41. PubMed ID: 18499413
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transfection of cultured primary neurons via nucleofection.
    Zeitelhofer M; Vessey JP; Thomas S; Kiebler M; Dahm R
    Curr Protoc Neurosci; 2009 Apr; Chapter 4():Unit4.32. PubMed ID: 19340811
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cost efficient and effective gene transfer into the human natural killer cell line, NK92.
    Grund EM; Muise-Helmericks RC
    J Immunol Methods; 2005 Jan; 296(1-2):31-6. PubMed ID: 15680148
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vivo electroporation in the embryonic mouse central nervous system.
    Saito T
    Nat Protoc; 2006; 1(3):1552-8. PubMed ID: 17406448
    [TBL] [Abstract][Full Text] [Related]  

  • 54. High-level transfection of primary rabbit T lymphocytes.
    Tervo HM; Allespach I; Keppler OT
    J Immunol Methods; 2008 Jul; 336(1):85-9. PubMed ID: 18471825
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetic manipulation of cerebellar granule neurons in vitro and in vivo to study neuronal morphology and migration.
    Holubowska A; Mukherjee C; Vadhvani M; Stegmüller J
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24686379
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo.
    Griesenbach U; Kitson C; Escudero Garcia S; Farley R; Singh C; Somerton L; Painter H; Smith RL; Gill DR; Hyde SC; Chow YH; Hu J; Gray M; Edbrooke M; Ogilvie V; MacGregor G; Scheule RK; Cheng SH; Caplen NJ; Alton EW
    Respir Res; 2006 Feb; 7(1):26. PubMed ID: 16480492
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Therapeutic RNA interference of malignant melanoma by electrotransfer of small interfering RNA targeting Mitf.
    Nakai N; Kishida T; Shin-Ya M; Imanishi J; Ueda Y; Kishimoto S; Mazda O
    Gene Ther; 2007 Feb; 14(4):357-65. PubMed ID: 17024102
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Targeting of interstitial cells using a simple gene-transfer strategy.
    Fujii N; Isaka Y; Takabatake Y; Mizui M; Suzuki C; Takahara S; Ito T; Imai E
    Nephrol Dial Transplant; 2006 Oct; 21(10):2745-53. PubMed ID: 16822795
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nucleofection-based gene targeting in human pre-B cells.
    Kurosawa A; Saito S; Mori M; Adachi N
    Gene; 2012 Jan; 492(1):305-8. PubMed ID: 22119888
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microfluidic electroporation for delivery of small molecules and genes into cells using a common DC power supply.
    Wang HY; Lu C
    Biotechnol Bioeng; 2008 Jun; 100(3):579-86. PubMed ID: 18183631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.