BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

659 related articles for article (PubMed ID: 1647305)

  • 1. Spontaneous and corticotropin-releasing factor-induced cytosolic calcium transients in corticotrophs.
    Guérineau N; Corcuff JB; Tabarin A; Mollard P
    Endocrinology; 1991 Jul; 129(1):409-20. PubMed ID: 1647305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Corticotropin-releasing hormone stimulates Ca2+ entry through L- and P-type Ca2+ channels in rat corticotropes.
    Kuryshev YA; Childs GV; Ritchie AK
    Endocrinology; 1996 Jun; 137(6):2269-77. PubMed ID: 8641175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of sodium channels and two types of calcium channels in the regulation of adrenocorticotropin release.
    Childs GV; Marchetti C; Brown AM
    Endocrinology; 1987 May; 120(5):2059-69. PubMed ID: 2436894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inward membrane currents and electrophysiological responses to GnRH in ovine gonadotropes.
    Heyward PM; Chen C; Clarke IJ
    Neuroendocrinology; 1995 Jun; 61(6):609-21. PubMed ID: 7544876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple cytosolic calcium signals and membrane electrical events evoked in single arginine vasopressin-stimulated corticotrophs.
    Corcuff JB; Guérineau NC; Mariot P; Lussier BT; Mollard P
    J Biol Chem; 1993 Oct; 268(30):22313-21. PubMed ID: 8226740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous pacemaker activity of rat tumour somatotrophs.
    Kwiecien R; Robert C; Cannon R; Vigues S; Arnoux A; Kordon C; Hammond C
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):883-905. PubMed ID: 9518740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of basal and corticotropin-releasing hormone-stimulated adenylate cyclase activity and cytosolic Ca2+ levels by somatostatin in human corticotropin-secreting pituitary adenomas.
    Spada A; Reza-Elahi F; Lania A; Bassetti M; Atti E
    J Clin Endocrinol Metab; 1990 May; 70(5):1262-8. PubMed ID: 1970828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Somatostatin blocks Ca2+ action potential activity in prolactin-secreting pituitary tumor cells through coordinate actions on K+ and Ca2+ conductances.
    Mollard P; Vacher P; Dufy B; Barker JL
    Endocrinology; 1988 Aug; 123(2):721-32. PubMed ID: 2456203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical properties of cultured human adrenocorticotropin-secreting adenoma cells: effects of high K+, corticotropin-releasing factor, and angiotensin II.
    Mollard P; Vacher P; Guerin J; Rogawski MA; Dufy B
    Endocrinology; 1987 Jul; 121(1):395-405. PubMed ID: 3036472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropeptide-Y enhances luteinizing hormone (LH)-releasing hormone-induced LH release and elevations in cytosolic Ca2+ in rat anterior pituitary cells: evidence for involvement of extracellular Ca2+ influx through voltage-sensitive channels.
    Crowley WR; Shah GV; Carroll BL; Kennedy D; Dockter ME; Kalra SP
    Endocrinology; 1990 Sep; 127(3):1487-94. PubMed ID: 1696888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vasopressin enhances a calcium current in human ACTH-secreting pituitary adenoma cells.
    Mollard P; Vacher P; Rogawski MA; Dufy B
    FASEB J; 1988 Oct; 2(13):2907-12. PubMed ID: 2844618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gonadotropin-releasing hormone induced Ca2+ influx in nonsecreting pituitary adenoma cells: role of voltage-dependent Ca2+ channels and protein kinase C.
    Prevarskaya N; Skryma R; Vacher P; Bresson-Bepoldin L; Odessa MF; Rivel J; San Galli F; Guerin J; Dufy-Barbe L
    Mol Cell Neurosci; 1994 Dec; 5(6):699-708. PubMed ID: 7704445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corticotropin-releasing hormone excites adrenocorticotropin-secreting human pituitary adenoma cells by activating a nonselective cation current.
    Takano K; Yasufuku-Takano J; Teramoto A; Fujita T
    J Clin Invest; 1996 Nov; 98(9):2033-41. PubMed ID: 8903322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depolarization counteracts glucocorticoid inhibition of adenohypophysical corticotroph cells.
    Lim MC; Shipston MJ; Antoni FA
    Br J Pharmacol; 1998 Aug; 124(8):1735-43. PubMed ID: 9756391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of action potential-driven calcium influx in GT1 neurons by the activation status of sodium and calcium channels.
    Van Goor F; Krsmanovic LZ; Catt KJ; Stojilkovic SS
    Mol Endocrinol; 1999 Apr; 13(4):587-603. PubMed ID: 10194765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of action potential-triggered [Ca2+]i transients in single smooth muscle cells of guinea-pig ileum.
    Kohda M; Komori S; Unno T; Ohashi H
    Br J Pharmacol; 1997 Oct; 122(3):477-86. PubMed ID: 9351504
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of action potentials and Ca2+ influx by the Ca(2+)-dependent chloride current in mouse pituitary cells.
    Korn SJ; Bolden A; Horn R
    J Physiol; 1991 Aug; 439():423-37. PubMed ID: 1654415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intracellular calcium concentration and hormone secretion are controlled differently by TRH in rat neonatal lactotrophs and somatotrophs.
    Lorsignol A; Taupignon A; Horvath G; Dufy B
    J Endocrinol; 1997 Sep; 154(3):483-94. PubMed ID: 9379126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium signalling in single growth hormone-releasing factor-responsive pituitary cells.
    Cuttler L; Glaum SR; Collins BA; Miller RJ
    Endocrinology; 1992 Feb; 130(2):945-53. PubMed ID: 1733736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glucocorticoids do not affect intracellular calcium transients in corticotrophs: evidence supporting an effect distal to calcium influx.
    Clark TP; Kemppainen RJ
    Neuroendocrinology; 1994 Sep; 60(3):273-82. PubMed ID: 7969785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.