BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 16473457)

  • 1. Interfacial properties of the M1 segment of the nicotinic acetylcholine receptor.
    Ambroggio EE; Villarreal MA; Montich GG; Rijkers DT; De Planque MR; Separovic F; Fidelio GD
    Biophys Chem; 2006 Jun; 121(3):171-6. PubMed ID: 16473457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The alphaM1 transmembrane segment of the nicotinic acetylcholine receptor interacts strongly with model membranes.
    De Planque MR; Rijkers DT; Liskamp RM; Separovic F
    Magn Reson Chem; 2004 Feb; 42(2):148-54. PubMed ID: 14745794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical properties of a synthetic transit peptide from wheat chloroplast ribulose 1,5-bisphosphate carboxylase.
    Ambroggio EE; Austen B; Fidelio GD
    J Pept Sci; 2007 Apr; 13(4):245-52. PubMed ID: 17394120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Langmuir monolayer study of the interaction of E1(145-162) hepatitis G virus peptide with phospholipid membranes.
    Sánchez-Martín MJ; Haro I; Alsina MA; Busquets MA; Pujol M
    J Phys Chem B; 2010 Jan; 114(1):448-56. PubMed ID: 20000622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides.
    Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC
    J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environmental factors differently affect human and rat IAPP: conformational preferences and membrane interactions of IAPP17-29 peptide derivatives.
    Pappalardo G; Milardi D; Magrì A; Attanasio F; Impellizzeri G; La Rosa C; Grasso D; Rizzarelli E
    Chemistry; 2007; 13(36):10204-15. PubMed ID: 17902185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of adsorption and penetration of E2(279-298) peptide into Langmuir phospholipid monolayers.
    Larios C; Miñones J; Haro I; Alsina MA; Busquets MA; Trillo JM
    J Phys Chem B; 2006 Nov; 110(46):23292-9. PubMed ID: 17107178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of KLA amphipathic model peptides with lipid monolayers.
    Erbe A; Kerth A; Dathe M; Blume A
    Chembiochem; 2009 Dec; 10(18):2884-92. PubMed ID: 19877001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the in situ structural and interfacial properties of the cationic hydrophobic heteropolypeptide, KL4, in lung surfactant bilayer and monolayer models at the air-water interface: implications for pulmonary surfactant delivery.
    Mansour HM; Damodaran S; Zografi G
    Mol Pharm; 2008; 5(5):681-95. PubMed ID: 18630875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mode of interaction of hydrophobic amphiphilic alpha-helical peptide/dipalmitoylphosphatidylcholine with phosphatidylglycerol or palmitic acid at the air-water interface.
    Nakahara H; Lee S; Sugihara G; Shibata O
    Langmuir; 2006 Jun; 22(13):5792-803. PubMed ID: 16768510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of perfluorinated compounds on the properties of model lipid membranes.
    Matyszewska D; Tappura K; Orädd G; Bilewicz R
    J Phys Chem B; 2007 Aug; 111(33):9908-18. PubMed ID: 17672485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the structure of the nicotinic acetylcholine receptor with the hydrophobic photoreactive probes [125I]TID-BE and [125I]TIDPC/16.
    Blanton MP; McCardy EA; Huggins A; Parikh D
    Biochemistry; 1998 Oct; 37(41):14545-55. PubMed ID: 9772183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the interaction of human defensins with cell membrane models: relationships between structure and biological activity.
    Lourenzoni MR; Namba AM; Caseli L; Degrève L; Zaniquelli ME
    J Phys Chem B; 2007 Sep; 111(38):11318-29. PubMed ID: 17784741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pressure-area isotherm of a lipid monolayer from molecular dynamics simulations.
    Baoukina S; Monticelli L; Marrink SJ; Tieleman DP
    Langmuir; 2007 Dec; 23(25):12617-23. PubMed ID: 17973510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of amyloid beta (1-40) peptide at phospholipid monolayers.
    Maltseva E; Kerth A; Blume A; Möhwald H; Brezesinski G
    Chembiochem; 2005 Oct; 6(10):1817-24. PubMed ID: 16175542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cholesterol component on molecular interactions between paclitaxel and phospholipid within the lipid monolayer at the air-water interface.
    Zhao L; Feng SS
    J Colloid Interface Sci; 2006 Aug; 300(1):314-26. PubMed ID: 16603177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational and interfacial analyses of K3A18K3 and alamethicin in model membranes.
    Kouzayha A; Nasir MN; Buchet R; Wattraint O; Sarazin C; Besson F
    J Phys Chem B; 2009 May; 113(19):7012-9. PubMed ID: 19419221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface behaviour and peptide-lipid interactions of the antibiotic peptides, Maculatin and Citropin.
    Ambroggio EE; Separovic F; Bowie J; Fidelio GD
    Biochim Biophys Acta; 2004 Jul; 1664(1):31-7. PubMed ID: 15238255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical properties and surface activity of surfactant-like membranes containing the cationic and hydrophobic peptide KL4.
    Sáenz A; Cañadas O; Bagatolli LA; Johnson ME; Casals C
    FEBS J; 2006 Jun; 273(11):2515-27. PubMed ID: 16704424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An infrared reflection-absorption spectroscopy study of the secondary structure in (KL4)4K, a therapeutic agent for respiratory distress syndrome, in aqueous monolayers with phospholipids.
    Cai P; Flach CR; Mendelsohn R
    Biochemistry; 2003 Aug; 42(31):9446-52. PubMed ID: 12899632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.