BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 16473776)

  • 1. Enhancement of cometabolic biodegradation of trichloroethylene (TCE) gas in biofiltration.
    Jung IG; Park OH
    J Biosci Bioeng; 2005 Dec; 100(6):657-61. PubMed ID: 16473776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the aerobic biodegradation of trichloroethylene via response surface methodology.
    Cutright TJ; Meza L
    Environ Int; 2007 Apr; 33(3):338-45. PubMed ID: 17188356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic TCE degradation by encapsulated toluene-oxidizing bacteria, Pseudomonas putida and Bacillus spp.
    Kim S; Bae W; Hwang J; Park J
    Water Sci Technol; 2010; 62(9):1991-7. PubMed ID: 21045323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC
    Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cometabolic microbial degradation of trichloroethylene in the presence of toluene.
    Sui H; Li XG; Xu SM
    J Environ Sci (China); 2004; 16(3):487-9. PubMed ID: 15272729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene.
    Han YL; Kuo MC; Tseng IC; Lu CJ
    J Hazard Mater; 2007 Sep; 148(3):583-91. PubMed ID: 17412499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toluene dioxygenase expression correlates with trichloroethylene degradation capacity in Pseudomonas putida F1 cultures.
    Liu J; Amemiya T; Chang Q; Qian Y; Itoh K
    Biodegradation; 2012 Sep; 23(5):683-91. PubMed ID: 22350420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removal of gaseous trichloroethylene (TCE) in a composite membrane biofilm reactor.
    Kumar A; Vercruyssen A; Dewulf J; Lens P; Van Langenhove H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(7):1046-52. PubMed ID: 22486674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradation analyses of trichloroethylene (TCE) by bacteria and its use for biosensing of TCE.
    Chee GJ
    Talanta; 2011 Sep; 85(4):1778-82. PubMed ID: 21872018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates.
    Kim S; Hwang J; Chung J; Bae W
    J Hazard Mater; 2014 Jun; 275():99-106. PubMed ID: 24857894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time reverse transcription PCR analysis of trichloroethylene-regulated toluene dioxygenase expression in Pseudomonas putida F1.
    Liu JB; Amemiya T; Chang Q; Xu X; Itoh K
    J Environ Sci Health B; 2011; 46(4):294-300. PubMed ID: 21500075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudomonas putida as the dominant toluene-degrading bacterial species during air decontamination by biofiltration.
    Roy S; Gendron J; Delhoménie MC; Bibeau L; Heitz M; Brzezinski R
    Appl Microbiol Biotechnol; 2003 May; 61(4):366-73. PubMed ID: 12743767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Addition of aromatic substrates restores trichloroethylene degradation activity in Pseudomonas putida F1.
    Morono Y; Unno H; Tanji Y; Hori K
    Appl Environ Microbiol; 2004 May; 70(5):2830-5. PubMed ID: 15128539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils.
    Suttinun O; Müller R; Luepromchai E
    Biodegradation; 2009 Apr; 20(2):281-91. PubMed ID: 18846429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of toluene by a lab-scale biofilter inoculated with Pseudomonas putida DK-1.
    Park DW; Kim SS; Haam S; Ahn IS; Kim EB; Kim WS
    Environ Technol; 2002 Mar; 23(3):309-18. PubMed ID: 11999993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of salinity conditions on kinetics of trichloroethylene biodegradation by toluene-oxidizing cultures.
    Lee CY; Liu WD
    J Hazard Mater; 2006 Sep; 137(1):541-9. PubMed ID: 16621274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toluene removal from waste air using a flat composite membrane bioreactor.
    Jacobs P; De Bo I; Demeestere K; Verstraete W; Van Langenhove H
    Biotechnol Bioeng; 2004 Jan; 85(1):68-77. PubMed ID: 14705013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of trichloroethylene and toluene toxicity to Pseudomonas putida F1.
    Singh R; Olson MS
    Environ Toxicol Chem; 2010 Jan; 29(1):56-63. PubMed ID: 20821419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate.
    Landa AS; Sipkema EM; Weijma J; Beenackers AA; Dolfing J; Janssen DB
    Appl Environ Microbiol; 1994 Sep; 60(9):3368-74. PubMed ID: 7524444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of biofilters to improve indoor air quality: the removal of toluene, TCE, and formaldehyde.
    Darlington A; Dixon MA; Pilger C
    Life Support Biosph Sci; 1998; 5(1):63-9. PubMed ID: 11540466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.