BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 16473900)

  • 1. Monolayers of a model anesthetic-binding membrane protein: formation, characterization, and halothane-binding affinity.
    Churbanova IY; Tronin A; Strzalka J; Gog T; Kuzmenko I; Johansson JS; Blasie JK
    Biophys J; 2006 May; 90(9):3255-66. PubMed ID: 16473900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model membrane protein for binding volatile anesthetics.
    Ye S; Strzalka J; Churbanova IY; Zheng S; Johansson JS; Blasie JK
    Biophys J; 2004 Dec; 87(6):4065-74. PubMed ID: 15465862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A designed cavity in the hydrophobic core of a four-alpha-helix bundle improves volatile anesthetic binding affinity.
    Johansson JS; Gibney BR; Rabanal F; Reddy KS; Dutton PL
    Biochemistry; 1998 Feb; 37(5):1421-9. PubMed ID: 9477971
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binding of the volatile anesthetic halothane to the hydrophobic core of a tetra-alpha-helix-bundle protein.
    Johansson JS; Rabanal F; Dutton PL
    J Pharmacol Exp Ther; 1996 Oct; 279(1):56-61. PubMed ID: 8858975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and characterization of a four-alpha-helix bundle protein that binds the volatile general anesthetic halothane.
    Pidikiti R; Shamim M; Mallela KM; Reddy KS; Johansson JS
    Biomacromolecules; 2005; 6(3):1516-23. PubMed ID: 15877373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics simulation of a synthetic four-alpha-helix bundle that binds the anesthetic halothane.
    Davies LA; Klein ML; Scharf D
    FEBS Lett; 1999 Jul; 455(3):332-8. PubMed ID: 10437799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a three-alpha-helix bundle protein that binds volatile general anesthetics.
    Manderson GA; Johansson JS
    Biopolymers; 2004 Nov; 75(4):338-54. PubMed ID: 15372486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A designed four-alpha-helix bundle that binds the volatile general anesthetic halothane with high affinity.
    Johansson JS; Scharf D; Davies LA; Reddy KS; Eckenhoff RG
    Biophys J; 2000 Feb; 78(2):982-93. PubMed ID: 10653811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of four-alpha-helix bundle cavity size on volatile anesthetic binding energetics.
    Manderson GA; Michalsky SJ; Johansson JS
    Biochemistry; 2003 Sep; 42(38):11203-13. PubMed ID: 14503870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, II: Fluorescence and vibrational spectroscopy using a cyanophenylalanine probe.
    Liu J; Strzalka J; Tronin A; Johansson JS; Blasie JK
    Biophys J; 2009 May; 96(10):4176-87. PubMed ID: 19450488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of four-alpha-helix bundles that bind the anesthetic halothane.
    Davies LA; Zhong Q; Klein ML; Scharf D
    FEBS Lett; 2000 Jul; 478(1-2):61-6. PubMed ID: 10922470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and biophysical characterization of a monomeric four-alpha-helix bundle protein Aα₄ with affinity for the volatile anesthetic halothane.
    Morstadt L; Meng QC; Johansson JS
    Biochim Biophys Acta; 2012 Dec; 1824(12):1409-15. PubMed ID: 22750405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for high-affinity volatile anesthetic binding in a natural 4-helix bundle protein.
    Liu R; Loll PJ; Eckenhoff RG
    FASEB J; 2005 Apr; 19(6):567-76. PubMed ID: 15791007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatile anesthetic modulation of oligomerization equilibria in a hexameric model peptide.
    Ghirlanda G; Hilcove SA; Pidikiti R; Johansson JS; Lear JD; Degrado WF; Eckenhoff RG
    FEBS Lett; 2004 Dec; 578(1-2):140-4. PubMed ID: 15581631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-alpha-helix bundle with designed anesthetic binding pockets. Part II: halothane effects on structure and dynamics.
    Cui T; Bondarenko V; Ma D; Canlas C; Brandon NR; Johansson JS; Xu Y; Tang P
    Biophys J; 2008 Jun; 94(11):4464-72. PubMed ID: 18310239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of stable polypeptide monolayers at interfaces: controlling molecular conformation and orientation.
    Boncheva M; Vogel H
    Biophys J; 1997 Aug; 73(2):1056-72. PubMed ID: 9251822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of interaction between the general anesthetic halothane and a model ion channel protein, I: Structural investigations via X-ray reflectivity from Langmuir monolayers.
    Strzalka J; Liu J; Tronin A; Churbanova IY; Johansson JS; Blasie JK
    Biophys J; 2009 May; 96(10):4164-75. PubMed ID: 19450487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimum structural requirement for an inhalational anesthetic binding site on a protein target.
    Johansson JS; Eckenhoff RG
    Biochim Biophys Acta; 1996 May; 1290(1):63-8. PubMed ID: 8645708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partially induced transition from horizontal to vertical orientation of helical peptides at the air-water interface and the structure of their monolayers transferred on the solid substrates.
    Kato N; Sasaki T; Mukai Y
    Biochim Biophys Acta; 2015 Apr; 1848(4):967-75. PubMed ID: 25559318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bound volatile general anesthetics alter both local protein dynamics and global protein stability.
    Johansson JS; Zou H; Tanner JW
    Anesthesiology; 1999 Jan; 90(1):235-45. PubMed ID: 9915333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.