These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 16473912)
1. Numerical simulation of gel electrophoresis of DNA knots in weak and strong electric fields. Weber C; Stasiak A; De Los Rios P; Dietler G Biophys J; 2006 May; 90(9):3100-5. PubMed ID: 16473912 [TBL] [Abstract][Full Text] [Related]
2. Fluctuating bond model of DNA gel electrophoresis. Schönherr G; Noolandi J Electrophoresis; 1991 Jun; 12(6):432-5. PubMed ID: 1889392 [TBL] [Abstract][Full Text] [Related]
3. Separation of long linear polymers in gel electrophoresis with alternating electric fields: a theoretical study using the necklace model. Terranova GR; Mártin HO; Aldao CM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061801. PubMed ID: 23005118 [TBL] [Abstract][Full Text] [Related]
7. Novel display of knotted DNA molecules by two-dimensional gel electrophoresis. Trigueros S; Arsuaga J; Vazquez ME; Sumners DW; Roca J Nucleic Acids Res; 2001 Jul; 29(13):E67-7. PubMed ID: 11433043 [TBL] [Abstract][Full Text] [Related]
8. Topological patterns in two-dimensional gel electrophoresis of DNA knots. Michieletto D; Marenduzzo D; Orlandini E Proc Natl Acad Sci U S A; 2015 Oct; 112(40):E5471-7. PubMed ID: 26351668 [TBL] [Abstract][Full Text] [Related]
9. Driving knots on DNA with AC/DC electric fields: topological friction and memory effects. Di Stefano M; Tubiana L; Di Ventra M; Micheletti C Soft Matter; 2014 Sep; 10(34):6491-8. PubMed ID: 25048107 [TBL] [Abstract][Full Text] [Related]
10. Electrophoretic charge density and persistence length of DNA as measured by fluorescence microscopy. Smith SB; Bendich AJ Biopolymers; 1990 Jul-Aug 5; 29(8-9):1167-73. PubMed ID: 2369630 [TBL] [Abstract][Full Text] [Related]
11. Effect of knots on binding of intercalators to DNA. Medalion S; Rabin Y J Chem Phys; 2014 May; 140(20):205101. PubMed ID: 24880332 [TBL] [Abstract][Full Text] [Related]
12. Efficient chain moves for Monte Carlo simulations of a wormlike DNA model: excluded volume, supercoils, site juxtapositions, knots, and comparisons with random-flight and lattice models. Liu Z; Chan HS J Chem Phys; 2008 Apr; 128(14):145104. PubMed ID: 18412482 [TBL] [Abstract][Full Text] [Related]
13. A numerical study of persistence length effects on DNA conformation in sequencing electrophoresis. Guerry E; Martin OC; Tricoire H; Siebert R; Valentin L Electrophoresis; 1996 Sep; 17(9):1420-4. PubMed ID: 8905257 [TBL] [Abstract][Full Text] [Related]
14. Sedimentation and electrophoretic migration of DNA knots and catenanes. Vologodskii AV; Crisona NJ; Laurie B; Pieranski P; Katritch V; Dubochet J; Stasiak A J Mol Biol; 1998 Apr; 278(1):1-3. PubMed ID: 9571029 [TBL] [Abstract][Full Text] [Related]
15. Characteristic length of the knotting probability revisited. Uehara E; Deguchi T J Phys Condens Matter; 2015 Sep; 27(35):354104. PubMed ID: 26292079 [TBL] [Abstract][Full Text] [Related]
17. Electrophoresis in strong electric fields. Barany S Adv Colloid Interface Sci; 2009; 147-148():36-43. PubMed ID: 19041962 [TBL] [Abstract][Full Text] [Related]
18. Topological transformations of synthetic DNA knots. Du SM; Wang H; Tse-Dinh YC; Seeman NC Biochemistry; 1995 Jan; 34(2):673-82. PubMed ID: 7819263 [TBL] [Abstract][Full Text] [Related]
19. Model and computer simulations of the motion of DNA molecules during pulse field gel electrophoresis. Smith SB; Heller C; Bustamante C Biochemistry; 1991 May; 30(21):5264-74. PubMed ID: 2036393 [TBL] [Abstract][Full Text] [Related]
20. Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Arsuaga J; Vázquez M; Trigueros S; Sumners D; Roca J Proc Natl Acad Sci U S A; 2002 Apr; 99(8):5373-7. PubMed ID: 11959991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]