These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 1647394)
41. Identification and structural ramifications of a hinge domain in apolipoprotein A-I discoidal high-density lipoproteins of different size. Maiorano JN; Jandacek RJ; Horace EM; Davidson WS Biochemistry; 2004 Sep; 43(37):11717-26. PubMed ID: 15362856 [TBL] [Abstract][Full Text] [Related]
42. A peptide derived from a conserved domain of Sendai virus fusion protein inhibits virus-cell fusion. A plausible mode of action. Ghosh JK; Shai Y J Biol Chem; 1998 Mar; 273(13):7252-9. PubMed ID: 9516418 [TBL] [Abstract][Full Text] [Related]
43. The thyroxine-binding site of human apolipoprotein-A-I: location in the N-terminal domain. Benvenga S; Cahnmann HJ; Robbins J Endocrinology; 1991 Jan; 128(1):547-52. PubMed ID: 1702705 [TBL] [Abstract][Full Text] [Related]
44. Helix-helix interactions in reconstituted high-density lipoproteins. Lins L; Brasseur R; De Pauw M; Van Biervliet JP; Ruysschaert JM; Rosseneu M; Vanloo B Biochim Biophys Acta; 1995 Aug; 1258(1):10-8. PubMed ID: 7654775 [TBL] [Abstract][Full Text] [Related]
45. Characterization of the binding of thyroxine to high density lipoproteins and apolipoproteins A-I. Benvenga S; Cahnmann HJ; Gregg RE; Robbins J J Clin Endocrinol Metab; 1989 Jun; 68(6):1067-72. PubMed ID: 2498379 [TBL] [Abstract][Full Text] [Related]
46. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Epand RM; Shai Y; Segrest JP; Anantharamaiah GM Biopolymers; 1995; 37(5):319-38. PubMed ID: 7632881 [TBL] [Abstract][Full Text] [Related]
47. Interactions of serum proteins with small unilamellar liposomes composed of dioleoylphosphatidylethanolamine and oleic acid: high-density lipoprotein, apolipoprotein A1, and amphipathic peptides stabilize liposomes. Liu D; Huang L; Moore MA; Anantharamaiah GM; Segrest JP Biochemistry; 1990 Apr; 29(15):3637-43. PubMed ID: 2111162 [TBL] [Abstract][Full Text] [Related]
48. Apolipoprotein A-II: chemical synthesis and biophysical properties of three peptides corresponding to fragments in the amino-terminal half. Chen TC; Sparrow JT; Gotto AM; Morrisett JD Biochemistry; 1979 Apr; 18(8):1617-22. PubMed ID: 218625 [TBL] [Abstract][Full Text] [Related]
49. Interaction of staphylococcal delta-toxin and synthetic analogues with erythrocytes and phospholipid vesicles. Biological and physical properties of the amphipathic peptides. Alouf JE; Dufourcq J; Siffert O; Thiaudiere E; Geoffroy C Eur J Biochem; 1989 Aug; 183(2):381-90. PubMed ID: 2474443 [TBL] [Abstract][Full Text] [Related]
50. Peptides as Therapeutic Agents for Atherosclerosis. White CR; Palgunachari M; Wolkowicz P; Anantharamaiah GM Methods Mol Biol; 2022; 2419():89-110. PubMed ID: 35237960 [TBL] [Abstract][Full Text] [Related]
51. Conformational studies of an amphipathic peptide corresponding to human apolipoprotein A-II residues 18-30 with a C-terminal lipid binding motif EWLNS. Buchko GW; Wang G; Pierens GK; Cushley RJ Int J Pept Protein Res; 1996 Jul; 48(1):21-30. PubMed ID: 8844260 [TBL] [Abstract][Full Text] [Related]
52. Differentiation of lipid-associating helices by use of three-dimensional molecular hydrophobicity potential calculations. Brasseur R J Biol Chem; 1991 Aug; 266(24):16120-7. PubMed ID: 1714906 [TBL] [Abstract][Full Text] [Related]
53. Comparison of anti-endotoxin activity of apoE and apoA mimetic derivatives of a model amphipathic peptide 18A. Sharifov OF; Nayyar G; Ternovoy VV; Palgunachari MN; Garber DW; Anantharamaiah G; Gupta H Innate Immun; 2014 Nov; 20(8):867-80. PubMed ID: 24323453 [TBL] [Abstract][Full Text] [Related]
54. Nuclear magnetic resonance investigation of the interactions with phospholipid of an amphipathic alpha-helix-forming peptide of the apolipoprotein class. Lund-Katz S; Anantharamaiah GM; Venkatachalapathi YV; Segrest JP; Phillips MC J Biol Chem; 1990 Jul; 265(21):12217-23. PubMed ID: 2373689 [TBL] [Abstract][Full Text] [Related]
55. Primary structure of apolipoprotein A-II from inbred mouse strain BALB/c. Miller CG; Lee TD; LeBoeuf RC; Shively JE J Lipid Res; 1987 Mar; 28(3):311-9. PubMed ID: 3106550 [TBL] [Abstract][Full Text] [Related]
56. Polar angle as a determinant of amphipathic alpha-helix-lipid interactions: a model peptide study. Uematsu N; Matsuzaki K Biophys J; 2000 Oct; 79(4):2075-83. PubMed ID: 11023911 [TBL] [Abstract][Full Text] [Related]
57. Turnover of synthetic class A amphipathic peptide analogues of exchangeable apolipoproteins in rats. Correlation with physical properties. Garber DW; Venkatachalapathi YV; Gupta KB; Ibdah J; Phillips MC; Hazelrig JB; Segrest JP; Anantharamaiah GM Arterioscler Thromb; 1992 Aug; 12(8):886-94. PubMed ID: 1637786 [TBL] [Abstract][Full Text] [Related]
58. Identification of peptide hormones of the amphipathic helix class using the helical hydrophobic moment algorithm. Dohlman JG; De Loof H; Prabhakaran M; Koopman WJ; Segrest JP Proteins; 1989; 6(1):61-9. PubMed ID: 2608660 [TBL] [Abstract][Full Text] [Related]
59. High-Resolution Structural Studies Elucidate Antiatherogenic and Anti-Inflammatory Properties of Peptides Designed to Mimic Amphipathic α-Helical Domains of Apolipoprotein A-I. Mishra VK; Anantharamaiah GM Nat Prod Commun; 2019 May; 14(5):. PubMed ID: 32864035 [TBL] [Abstract][Full Text] [Related]